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The downstream migration of juvenile salmon is a critical phase of salmon life history.
Individuals are susceptible to mortality from a variety of sources, and in the Columbia
River system, hydroelectric dams are a further source of mortality. Models that describe the
spatial and temporal distribution of populations of fish can aid in the understanding of
juvenile salmon behavior and can be used as management tools. This dissertation presents
several models of the distribution of migrating juvenile salmonids. The models are derived
from diffusion equations and are expressed as probablity density functions. Likelihood
functions are formulated from the probability densities and data, and parameter estimation
and alternative model comparison are based on the likelihoods.

A two parameter travel time model is effective at describing the arrival time
distributions of run-of-the-river, yearling chinook. One of the parameters determines the
rate of downstream migration; the other parameter determines the rate of population
spreading. After model parameters are related to date of release and river flow in a nonlinear
regression equation, the model is used predictively. With subyearling chinook, a delay term,
which represents delay in the initiation of migration, substantially improves the travel time
model. In addition, fish length is determined to be important in modeling sockeye and
subyearling chinook travel time. The vertical distribution of juvenile salmonids in the
forebay is modeled based on a chemotaxis equation, where the fish cue on light intensity.
The correspondence between the model and data is good.
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1. Introduction

Salmon populations in the Columbia River system have declined dramatically
in the past century. A century ago, an estimated 8 - 16 million adult salmon and
steelhead returned to the Columbia River each year (Chapman, 1986; NPPC, 1992).
A current estimate of adult returns is 2.5 million, and many of these returnees are
hatchery stock (NPPC, 1992). In addition to reduction in numbers, the elimination
of runs associated with particular tributaries has resulted in a loss of genetic
diversity. This alarming reduction in salmon runs prompted Congress to pass the
Pacific Northwest Electric Power Planning and Conservation Act in 1980, which
dictates that a certain percentage of revenues generated from hydroelectricity be
directed to restoring salmon populations. In addition, in 1991 Snake River sockeye
were listed under the Endangered Species Act, and Snake River chinook were also
listed as threatened in 1992. Currently, other stocks are being considered for this

status.

The Columbia Basin is an extensive region extending into the states of
Washington, Oregon, Idaho, and Montana, and the province of British Columbia
(Figure 1.1). In addition to the Columbia River and its major tributary, the Snake
River, many tributaries, including the Yakima, Wenatchee, Methow, Clearwater and
Salmon Rivers, comprise the Columbia River system. Several species of
anadromous salmonidé inhabit the Columbia River system — sockeye

(Oncorhynchus nerRacoho Q. kisutch), chinook Q. tshawytschga and steelhead

1. Anadromous fish are reared in freshwater habits, migrate to saltwater habitats, and return
as adults to freshwater habitats to spawn.
2. Salmonids are salmon and their close relatives, including trout.
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Figure 1.1 A map showing the major features of the Columbia River Basin in Washington, Oregon,

and Idaho.
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Anadromous salmonids spend the first part of their lives in rivers or lakes and then
migrate downstream to saltwater as juveniles. After an extended period of growth in
saltwater, they return to a freshwater environment to spawn. Because of their migratory
nature, they encounter a variety of habitats and thus are exposed to several different sources
of mortality. The accumulation of these effects has greatly reduced their numbers in the
Columbia River system. Spawning and rearing habitat has been degraded due to
development, irrigation, and logging practices. Also, some dams, such as the Grand Coulee,
are impassable to fish, and rearing habitat has been entirely lost upstream from the dam. As
a result, over fifty percent of spawning habitat has been eliminated above McNary Dam
(Raymond, 1988). In the ocean, harvest of adults by sport and commercial fisheries is an

additional source of mortality.

The downstream migration of juvenile salmon is a particularly critical stage of the
salmon life history (NPPC, 1992), but migratory behavior is not well understood. Some
species of salmon migrate for hundreds of miles as juveniles and in doing so incur heavy
mortality due to factors such as predation and disease. In addition, during outmigration
juvenile salmon undergo smoltification, a series of physiological, behavioral and
biochemical changes preparing them for a saltwater habitat (Hoar, 1976). Since arrival to
the estuary is coordinated with smoltification (Folmar and Dickhoff, 1980), the timing of
outmigration is important to ensure that the smolts reach saltwater when they are

physiologically ready.

In the Columbia River system, the downstream migrants are exposed to further hazards
due to the presence of dams — some runs must pass nine dams during their migration. In
addition to being a direct source of mortality, dams complicate the migration process by

creating large reservoirs in which river velocity is significantly reduced (Raymond, 1968),
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potentially disrupting the timing of migration. Also, the reservoirs have higher
temperatures and less turbidity compared to free flowing rivers, potentially resulting in
greater susceptibility to predation and disease (Park, 1969). In light of this, it is not
surprising that mitigation efforts have targeted the downstream migration phase as crucial

in terms of revitalizing salmon populations in the Columbia River system.

In this thesis, | develop spatial and temporal models of distributions of migrating
juvenile salmonids. Model building and testing can be an important component in natural
resource management. Models allow for the examination of various long term management
scenarios without conducting costly experiments. The predictive ability of models is a
useful tool in day to day operations. Also, the process of developing models and applying

them to data enhances the understanding of the animal’s behavior.

In all cases, the models | develop have practical applications, so comparing the models
to data is important. In analyzing data, | have several objectives. First of all, | estimate
parameters and construct confidence intervals. Secondly, | assess whether the models are
consistent with the data; this involves goodness-of-fit tests. In some cases | evaluate which
factors — biotic and abiotic — are important to the models. Finally, | attempt to use the

models as predictive tools with independent data.

For the remainder of this chapter, | provide a brief overview of salmon biology and
behavior relevant to modeling migrating populations. Chapter 2 reviews the use of models
to describe dispersing animal populations. Chapter 3 covers the statistical procedures |
follow and discusses the data used in the applications. Chapter 4 presents a model of the
travel time of juveniles through a reservoir and includes applications to group releases of
migrating chinook salmon and steelhead. Several extensions to the travel time model are
presented in chapter 5 — time dependent mortality, delay in migration, a migrational effort

component, and time variable parameters. In chapter 6, | develop methods to apply the
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travel time model to individuals, and in the process, assess which individual covariates are
important to the model. In chapter 7, | develop models of the movement patterns of
individuals and apply the models to radio-tracking data. Chapter 8 contains a model of the

vertical distribution of fish in the water column in relation to environmental gradients.

All computational algorithms are written in the C programming language (Kernighan
and Ritchie, 1978) and run on a Sun Sparcstation 2. Plots were constructed and some of the
statistical analyses performed using the S-plus statistical/graphical software package

(Becker, et al., 1988).

1.1. Anadromous salmonid biology

overview of anadromous salmonid éfhistory

Although quite variabile in their life histories (within and among species), anadromous
salmonids share the following traits. Adult fish spawn in freshwater streams or lakes,
usually in late summer or fall (Groot and Margolis, 1991). Their large yolky eggs are buried
in the substrate, and embryonic development occurs here (Thorpe, 1984). The juveniles
emerge from the substrate the following spring as “fry” and are dependent on external food
sources upon emerging (Thorpe, 1984). The life histories of the various species diverge at
this point, with some species migrating to the estuary at this stage and other species
delaying their migration for months or years (Northcote, 1984). After passing through the
estuary, the fish carry out most of the growth in the ocean. Depending on the species and
stock, the fish spend between one and seven years in the ocean (Groot and Margolis, 1991).
Adults then return to their natal streams or lakes (although some straying is common

(Quinn, 1984)) and die shortly after spawning.

chinook salmon

Chinook salmon are divided into two “races” (or subspecies, depending on

nomenclature), both of which inhabit the Columbia River system. “Ocean-type” chinook
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return as adults in the late summer or fall and spawn almost immediately after reaching the
natal stream (Healy, 1991). The juveniles migrate as subyearlings, usually several months
after emerging as fry, although timing of emigration is quite variable (Reimers and Loeffel,
1967). This group is also referred to as “chinook 0's” or as fall chinook. Ocean-type
chinook are generally found in the southern part of the species’ range. “Stream-type”
chinook return as adults in the spring and delay spawning for several months. The juveniles
migrate as yearlings after overwintering in the river environment. These fish, also referred
to as “chinook 1's” or as spring chinook, are generally found in the northern part of the
species’ range. Although the two types of chinook may occupy the same streams, they
appear to be genetically distinct (Carl and Healy, 1984) and show heritable behavioral
differences (Taylor and Larkin, 1986; Taylor, 1988). Stream-type juveniles display higher
levels of antagonistic behavior and stronger positive current response, consistent with

defending territory and extended residence in streams.

sokeye

The life history of sockeye salmon is the most variable of all the Pacific salmon, with a
wide variety of adaptations for specialized conditions (Burgner, 1991). In addition to the
anadromous form, there is a landlocked form commonly referred to as kokanee.
Anadromous sockeye usually spawn in the tributaries of lakes (Groot, 1982). Upon
emergence, the fry migrate to a nursery lake where they may spend 1 to 3 years. The
sockeye smolts then migrate downstream to the ocean. Ocean residence for sockeye is

variable, ranging from 1 to 4 years (Burgner, 1991).

steelhead trout

Steelhead troutgncorhynchus mykiyss the same species as rainbow trout, with
steelhead a migratory form and rainbows a landlocked form. Steelhead, until recently, were

classified asSalmo gairdnesi partially reflecting their morphological and behavioral
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similarities to Atlantic salmonSalmo salay (Netboy, 1980). The change of nomenclature

is based on the Pacific coast origin of the species and an alignment with Pacific salmon
(Light, et al., 1989). The Columbia River Basin is the world’s largest producer of steelhead
(Netboy, 1980; Light, 1987). Steelhead are generally split into two races: “winter”
steelhead return as adults between November and April; and “summer” steelhead return as
adults from May to October (Withler, 1966). In the Columbia Basin, winter-run steelhead
are found exclusively west of the Cascades, while summer-run steelhead are found in some
western tributaries and are the only steelhead found in the Snake and upper Columbia
Rivers and their tributaries (Pevin, 1990). Smolts usually migrate in the spring of their
second year, but there is variability in the duration of freshwater residence (Withler, 1966).
The majority of steelheads spend 2 years in the ocean before returning as adults (Pevin,
1990). Unlike Pacific salmon, steelhead don’t always die after spawning (Childerhouse and
Trim, 1979). A small percentage return to the ocean after spawning and then return back to

freshwater the following year to spawn again.

coho

In Washington and Oregon, coho are found primarily in coastal streams and tributaries
of the Lower Columbia (Sandercock, 1991). The freshwater residence of coho is quite
variable, and they have the most extended stream residence of Pacific salmon (Taylor and
Larkin, 1986). Because few wild populations of coho undergo extensive migrations in the

Columbia River or its tributaries, | do not analyze any coho data in this thesis.

smoltification

The initiation of migration is preceded by the parr-smolt transformation (smoltification)
(Folmar and Dickhoff 1980), in which the juveniles transform from a stage in their life
history adapted for stream inhabitation to a stage adapted for downstream migration and

eventually saltwater inhabitation. Smoltification is a series of morphological,
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physiological, and behavioral changes. A discussion of smoltification is important for two
reasons. First, the morphological, physiological and behavioral changes are all related, and
thus understanding how each operates can help elucidate the behavioral changes important
to modeling. Also, it is clear that the timing associated with smoltification is critical, and

this lends importance to the travel time studies.

Behaviorally, the fish undergo several changes. Prior to smoltification, the fish exhibit
positive rheotaxis (Thorpe and Morgan, 1978), and maintain their position in the river or
lake. They are also territorial bottom dwellers. Upon smoltification, fish are less prone to
hold position against the current, and thus downstream movement becomes initiated. In

addition, they become less territorial and more surface oriented.

Morphological changes that occur during smoltification are a silvering in body color
and a decrease in weight per unit length (commonly referred to as condition factor)
(Wedemeyer, et al. 1980), resulting in a more slender and streamlined fish. Some evidence
exists for a threshold size that may be important in the timing of seaward migration (Folmar

and Dickhoff, 1980).

Physiologically, several changes occur during smoltification. First, there is heightened
hypoosmotic regulatory capability that increases salinity tolerance and preference.
Endocrine activity increases, notably in greater levels of thyroxine, and according to Hoar
(1965), the endocrine system forms a chemical link between the organism and the
environment. The higher hormonal levels may also induce a behavioral response; Godin et

al. (1974) demonstrated that artificially increasing thyroxine levels in Atlantic salmon
smolts leads to increased migratory behavior. Also, an increase in ‘gl NarPase

activity is typical of fishes existing in saltwater environments. In fact giltKfAATPase

is often sampled to assess the level of smoltification in juveniles (Zaugg, 1982).
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Clearly, smoltification is a complex process, and events are coordinated such that fish
are ready to enter saltwater at the appropriate time. Flagg and Smith (1982) determined that
juvenile coho with visuals signs of smoltification suffered no loss of swimming stamina
when transferred from freshwater to a seawater, while juveniles without these signs did
suffer a loss in swimming stamina. Fish that weren't transferred from fresh water to sea
water at the proper time appeared sluggish, potentially increasing their susceptibility to

predation. Flagg and Smith (1982) also determined that mortality associated with salt water

stress was is inversely related to levels of thyroxine ant] K& ATPase, which are
indicators of degree of smoltification. Observations also show that some species of
salmonids revert back to a freshwater adapted state if they don't reach saltwater within a
certain time frame (Hoar, 1976). It appears that a species and stock specific optimal period
for reaching saltwater exists that maximizes survival of the fish. Thus, modeling the
temporal aspects of migratory behavior can be beneficial in coordinating migrations of
hatchery stocks and in determining deleterious effects of delaying the migration of wild

stocks.

juvenile salmon migratory behavior

Clearly, many facets of juvenile salmon migratory behavior are not well understood.
Behavior patterns are quite variable among species, and in some cases, among stocks. It
possible to generalize some types of behavior across species, but with other types of
behavior it is important to note differences. In many cases where a group of workers
establishes a behavior pattern for a particular species, another group offers a counter

example

In this section, | present some questions pertaining to salmon migratory behavior and
results of studies examining these issues. While my focus is on the behavior of steelhead,

chinook, sockeye, and coho, | will also present results based on other species of
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anadromous salmonids, including Atlantic saim&alno salay and sea troutSalmo

trutta).
» What cues the initiation of migration?

A combination of endogenous and exogenous factors cue the initiation of migration. As
Groot (1982) stated, “environmental factors interact with endogenous rhythms to modify
the organism morphologically, physiologically, and behaviorally to a state of migration
readiness, or migration disposition.” The physical and physiological changes mentioned
above prepare the fish for migration, but exogenous cues may actually trigger the onset of
migration. Several people have demonstrated the importance of photoperiod (Hoar, 1976;
Giorgi, et al., 1990). Also, a study by Holtby et al. (1989) indicated that a combination of
seasonal timing (perhaps cued by photoperiod) and temperature are important in determing
when coho smolts initiate downstream migration. High flows or “freshets” may also induce

the juveniles to move downstream.
* Is migration active or passive?

Some dispute exists as to the degree of active migration undertaken by juveniles during
downstream migration. Some people argue that active migration would unnecessarily
expend energy reserves (Thorpe, 1982) when downstream migration could be achieved by
an entirely passive process. Others argue that active migration decreases the time spent
migrating and thus minimizes exposure to predators (Neave, 1955). As with other
behavioral traits in salmonids, the degree of active migration probably varies among
species. Thorpe (1982) speculates that pink, chum and sockeye salmon undergo active
migration while coho, chinook and Atlantic salmon partake in passive migration. Many
studies are consistent with this speculation. Johnson and Groot (1963) concluded that

sockeye smolts migrated actively through the Babine Lake system in British Columbia, and
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Groot (1965) observed active migration in sockeye smolts, where the fish migrated at close
to their maximum sustained speed. Also, Bax (1982) concluded that chum salmon in the
Hood Canal in Washington actively migrated downstream. On the other hand, several
radio-tracking studies of Atlantic salmon (Fried, et al. (1978), LaBar et al (1978), and

McCleave et al. (1978) in a Maine estuary; Thorpe, et al. (1981), Tytler, et al. (1978) in a

Scottish estuary) lend support to passive migration in this species.

Also consistent with passive migration in coho and Atlantic salmon are studies
determining that some smolts exhibit a loss of swimming proficiency as compared to fish
in the parr stage. Smith (1982), Flagg and Smith (1982) and Glova and Mclnerney (1977)
observed this with coho, and Thorpe and Morgan (1978) determined sustained swimming
velocities of Atlantic salmon juveniles decreased substantially during the period of peak
downstream migration. It is not clear, though, whether this loss of swimming “proficiency”
is due to a physical change or, as Thorpe and Morgan (1978) speculate, “a behavioral

refusal to undergo sustained swimming.”
» Do migrating juvenile salmonids have distinct diel patterns?

Hoar (1953, 1956) attributed nocturnal displacement to a loss of visual orientation.
Hansen and Jonnson (1985) tested this with Atlantic salmon in the River Imsa, Norway.
They trapped significantly more fish during the dark than during the light and concluded
that light inhibited displacement. Other studies concluded that Atlantic salmon migrate
almost exclusively at night early in the season but lose this tendency as the season
progresses (Osterdahl, 1969; Thorpe and Morgan, 1978). Mains and Smith (1964)
demonstrated that the majority of ocean-type chinook migration occurs at night in the
Columbia and Snake Rivers. There might be less of a tendency for nocturnal migration in
stream-type chinook, though (Healy, 1991). Bell (1958) actually observed more migrants
during the daylight hours. A study by Meehan and Siniff (1969) in the Taku River in Alaska
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demonstrated that chum and coho preferred to migrate at night, while sockeye showed no

preference between day and night.
* Do fish school as they migrate?

According to Hoar (1976), sockeye, chum and pink salmon actively school during

migration, and the others are strongly territorial, occasionally forming loose aggregations.
» What factors influence migration rate?

Several factors influence downstream migration rate in juvenile salmonids. River
velocity is the most obvious factor, and several studies have related migration rate to river
velocity or river flow. Berggren and Filardo (1993) demonstrated that river flow is an
important factor in predicting migration rates for yearling and sub-yearling chinook and
steelhead in the Columbia and Snake Rivers. Bax (1982) correlated downstream migration
rate of chum salmon with wind speed in the direction of the migration path, which had an
effect on surface currents. Johnson and Groot (1963) determined that migrating sockeye
had increased migration rates later in the season. They attributed this to increased
“migration drive.” In addition, Washington (1982) provides evidence for a positive

relationship between migration rate and fish length with coho smoilts.
» What is the spatial distribution of fish in the river?

Bax (1982) determined that juvenile salmonids in the Hood Canal migrate close to the
shore early in the season and further offshore later in the season. Mains and Smith (1964)
determined that a large proportion of juvenile chinook in the mid-Columbia and Snake
Rivers migrated near shore but fish were also found mid-river. In the Hanford reach of the
mid-Columbia, Dauble et al. (1989) found that subyearling chinook preferred shallow near-
shore locations, and yearling chinook and sockeye smolts preferred deeper mid-channel

locations.



2. Overview of models of dispersing animals

2.1. Introduction

In this chapter, | review some models of animal dispersal, focusing on models that | will

develop in later chapters.

Models of animal dispersal date back to the early part of this century. Pearson and
Blakeman (1908) and Brownlee (1911) are credited with developing the first models of
animal dispersal, using random walk models to describe movement patterns. Two landmark
works of the middle of the century are Dobzhansky and Wright's (1943), which modeled
the dispersal of fruit flies, and Skellam’s (1951), which modeled the range expansion of
small mammals. Also during this period, Patlak (1953a; 1953b) developed a fairly complex
random walk based model of dispersal that was overlooked at the time but has received
attention lately. In 1969, two papers marked the beginning of the computer era for dispersal
models: Rohlf and Davenport (1969) simulated random walk models to mimic various
dispersal behaviors, and Siniff and Jensen (1969) conducted simulations of the movements
of foxes and hares in their home ranges. The past two decades have seen many refinements

in the models and in methods of applying the models to data.

Models based on the movements of individuals are referred to as “microscopic” models
(Aronson, 1985). For these models, the spatial and temporal scales are relatively fine, and
more detail can be included in the model. Models based on group dynamics are labeled
“macroscopic” models. These models are usually concerned with gross patterns on broader
temporal and spatial scales. It is interesting to note that each microscopic model has a
corresponding macroscopic model, amck versaAlso, it is not always clear whether a

model should be classified as microscopic or macroscopic since there is a gradation
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between the two.

2.2. Models of indvidual movements

random walk models

Simple random walks have formed the basis of several animal movement models.
Except in unusual circumstances, however, simple random walks cannot adequately
describe the movements of individuals; the random walk represents too much of a
simplification. On the other hand, if step size is adequately small and the number of
individuals is sufficiently large, the spatial dynamics of a group of random walkers shares

many similarities with observed population patterns.

The simple random walk model can be presented as follows. First, assume that an
individual moves a distana&x (in one dimension) during each time interl Assume
that the individual moves to the right with probabibtyand to the left with probabilitf,
with a + 3 = 1. Whena = (3 the random walk is termed isotropic, and winen the
random walk is anisotropic or biased. Aftemoves, lety, be the number of moves to the
right andn; be the number to the left. The position of the individual in units of movement

aftern steps is

m= n-n,. (2.1)

The probability of individual occurring at positiomaftern steps is

n!

NN -
T (2.2)

p(mn =

that is,p(m, n follows a binomial distributionp(m, ) can also be expressed as forward

Chapman-Kolmogorov equation (Okubo, 1980):

p(mn = alp(m-1,n-1)+Bp(m+1,n-1) . (2.3)



18

The random walk model is easily expanded to two or three spatial dimensions.

Jones (1977) successfully applied a simple random walk on a grid to describe
population patterns of cabbage butterflié®(is rapael.). An added advantage of random
walk models is that behaviors such as taxis, kinesis and density dependence can be easily

added to a random walk model, as demonstrated by Rohlf and Davenport (1969).

Several workers have extended the simple random walk model on a regular grid to
include movements of various lengths in any direction and correlation in the direction of
movements (e.g., Siniff and Jensen, 1969; Skellam, 1973; Kitching and Zalucki, 1982;
Kareiva and Shigesada, 1983). In these models, for each movement increment, a length and
an angle are drawn from distributions, with the new angle of movement based on the
previous angle. Othmer, et al. (1988) provide many modifications to random walk and

dispersal models.

Individual mavement in continuous time and space

In continuous time and space, the position of an individual can be denotéy, oyith

XOR", n=1,2or 3, antl> 0. For ease of notation, | will assuXél Rl . The change in
position of an individual with respect to time can be described by a stochastic differential

equation (SDE) (Gardiner, 1983):

%X = (X, 1) + o(X, )DW(1) . (2.4)

W(t) is white noise and has the following properties:
<W(t> =0,
<W(t), W(t+1)> = 9(1),

whered(t) is the Dirac distribution. Ito calculus is assumiéthe parameters ando are
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constants andV(t) is Gaussian white noise, theédft) is the Weiner drift process. The

Wiener drift process has the following properties (Ross, 1985):

1) X(0) = 0;

2) fort > 0, X(t) is normally distributed with meam and variance“t

3) each disjoint segment of an individual path is independent.

In chapter 7, | apply this process to movement of migrating juvenile salmon.

2.3. Group movements

introduction

The diffusion equation has formed the cornerstone of many models of animal dispersal
(Okubo, 1980). While simple passive diffusion is appropriate in some cases, diffusion is
often combined with other terms such as population drift or attraction to particular
environmental conditions. Also, the simple diffusion equation may be modified to account
for factors such as density dependence or variable diffusivity based on environmental

conditions.

basic difusion equation

Ordinary (Fickian) diffusion is a process where the @it particles is from high to
low concentrations and is proportional to the gradient of concentratiop(xtj is

concentration (or density), one-dimensional flux is expressed as

_ op
J =Dy, (2.5)

with D determining the diffusivity of the particles. Based on equation (2.5), the change in

population density through time is
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0 3P
ap(X,t)— P (2.6)

In order to solve equation (2.6) fpfx,t), boundary conditions and initial conditions
must be specified. The simplest case is to have natural boundariesX\dserdake on

values from—co too , and a point releasé at0 andX = x5. Formally, this is stated as:
p(_oo!t) = p(°°, t) = O,

p(x 0) = d(X—Xg) -

In this case, the unigqu®Xx,t) that satisfies equation (2.6), assumigg 0 and assuming

the parametel is a constant, is:

_ 1 X2 7] [F-00 < X < 0[]
p(x 9 = mexﬁotﬂ O0<t<o [ (2.7)

(Goel and Richter-Dyn 1974, Gardiner 1983). This solution is a normal distribution with
respect tax for fixed t, with mean 0 and varian@Dt; note that the variance increases

linearly with time.

Both equations (2.6) and (2.7) can be derived from a simple random walk. In the first
case, the random walk is expressed as a forward Chapman-Kolmogorov equation with step
lengthAx and time stept. This is then expanded in a Taylor series, higher order terms are
ignored, and the diffusion limit is taken, resulting in equation (2.6) (Okubo, 1980). In the
second case, the probability of a particle occupyingrtiheposition aften stepsp(m,n),
is expressed as a binomial distribution. Using Stirling’s fornp(ia,n) is approximated
with a normal distribution. The step length and time step are then allowed to become

arbitrarily small, and equation (2.7) is obtained (Murray, 1989).

In a classic experiment, Dobzhansky and Wright (1943) released mutant flies
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(Drosophila pseudoobscurayith orange eyes (to distinguish them from the wild flies)
from a point, and then recaptured the individuals along linear transects emanating from the
release point. They then compared the observed distribution of flies to equation (2.7).
Kareiva (1983) gathered data from mark recapture experiments of 12 species of
herbivorous insects, and compared the data to a passive diffusion model. He concluded that

in 8 out of 12 cases, a passive diffusion model is consistent with the data.

advection-difusion

The advection-diffusion equation is appropriate when a population is not only
spreading but also “drifting” in a particular direction. This equation can be formulated in

one dimension as

op _ _,0p, 0D 2.8)

ot GX ox2’

wherer determines the rate of drifting. With a point release=a® and natural boundaries,

the solution of equation (2.8) is:

p(x 1) = ot pH'(XAfB;t)Z . (2.9)

For fixedt this is a normal distribution with me#nand varianc@Dt. These two equations
are derived in a similar manner to the corresponding ordinary diffusion equations but
starting with a biased random walk — a random walk where the probability of moving to the

right is not equal to the probability of moving to the left.

The advection-diffusion equation has been used most commonly as a model of
migration. Wilkinson (1952) used this as a basis of a model of bird migration. Saila and
Shappy (1963) present a model migration based on a random walk with a directed

movement component and apply the model to migrating adult salmon. They concluded that
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very little oriented movement is necessary to achieve the observed migratory patterns.
Recently Hiramatsu and Ishida (1989) modified Saila and Shappy’s model in terms of the

advection-diffusion equation

op _ . 0p %‘p 9 pL
3t —ran+D X2+W% (2.10)

where thecaxis is aligned in the direction of orientation, apd the drift in that direction.
The advection-diffusion equation forms the basis of the travel time models used in chapters

4-6.

spatial hetengeneity

As mentioned in the previous section, environmental heterogeneity can affect the
dispersal behavior of animals. There are several ways to incorporate this into a model. One
way is to assume that the diffusion coefficidht,s related to some environmental factor

and thus varies spatially.

When there is spatial heterogeneity in the diffusion coefficient, it is important to
categorize the response to the heterogeneity as “attractive”, “neutral”, or “repulsive”
(Skellam, 1973; Aronson, 1985; Okubo, 1986). In other words, is the diffusiveness of the
individual determined by conditions of the current location (repulsive), conditions at the
location of the next move (attractive), or an average of both these (neutral)? As shown by
Skellam (1973) and Okubo (1986), these distinctions have a drastic effect on the resulting

distribution. If we letD = D(x), the following equations describe a repulsive system, a

neutral system and an attractive system, respectively:

op _ 0°

3t - 67(Dp) (2.11)
op _ 0 ~0pPQ

3t = axPaxD (2.12)
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0p _ 0 (520 [P
X ang ax[b (2.13)

In a closed system (i.e., a system with reflecting boundaries), equation (2.11) results in
p(x t) -~ C/D, equation (2.12) results ip(x, t) -~ C , and equation (2.13) results in
p(x t) = CD, where C is a constant determined by the system (Skellam, 1973).

Returning to the site of Dobzhansky and Wright's (1943) original experiment,
Dobzhansky et al. (1979) examine the effect of habitat heterogeneity on the dispersal of
Drosophila spp.They found that a dispersal model with diffusion coefficients related to
habitat type was better able to describe observed patterns than one with constant

coefficients.

models of kemotaxis

Originally developed to describe the response of cells to a chemical gradient (Keller and
Segel, 1971), the chemotaxis model is an alternative way to describe an organism’s
response to environmental heterogeneity. In chemotaxis, variability in the concentration of
a critical chemical produces an advection velocity in the direction of the gradient of

concentration. The equation for chemotaxis is of the form:

op _ oun

ot ax2 Xax ox O (2.14)

where U is the concentration of the chemical apds the chemotactic coefficient. In
ecological applicationslJ(x) can be viewed as an environmental potential function

(Teramato and Seno, 1988). Equation (2.14) can be rewritten as:

op _ 0 p 6 .

Thus the effect as the environmental potential is to induce an advective velocity of
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magnitudeU' . Few studies have actually attempted to apply these models to field data,
perhaps because of the difficulty in defining the environmental potential function. In
chapter 8, | apply this type of model to the vertical distribution of fish along an

environmental gradient.

density dependence

The standard form of the diffusion equation with density dependence is:

ou _ 0 ur]
(Gurney and Nisbet, 1975; Gurtin and MacCamy, 1977)D'lfu) >0 ufor0 , then

equation (2.16) models interference among individuals (Alt, 1985). If, on the other hand,
D'(u) <0 for u>0, then equation (2.16) models attraction among individuals. Random
movement can be included in addition to density dependent movement by formulating the

diffusion term as:

D(u) = a+B(u) (2.17)
similar to Shigesada, et al. (1979). Heris a constant and represents density independent
diffusion, andf(u) represents density dependent diffusion. Wb¥n) is of the form
D(u) = (u/uy)™, equation (2.16) is called the porous medium equation (Gurtin and
MacCamy, 1977; Murray, 1989), and an analytical solution is available. Note thathwhen
= 0, the porous medium equation reduces to simple diffusion. A feature of the porous
medium equation is that the population disperses as a front — there is no infinite tail as there
is in the simple diffusion equation. This is becaD§e&) = 0 whenu = 0, as is the case just
beyond the dispersing front. Shigesada (1980) applied the porous medium equation with m

= 1 to dispersing ant lions. Included in her model is a settling phase of the organism.

Density dependent diffusion involving attraction among individuals is more difficult
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mathematically. Since the diffusion term is negative, the problem is not well posed (Alt,
1985; Aronson, 1985). A problem is well posed if there is a unique solution that varies
continuously with the initial conditions (Haberman, 1987). Slight perturbations result in
only slight changes in the unique solution. Because of the compound effect of higher
densities attracting more density, spikes of density form, and the position of these spikes is
highly sensitive to the initial conditions. This a case, however, where the underlying
discrete model is well posed and can be used to simulate density dependence with attraction

among individuals.

2.4. Waiting time, Poisson piocess

We are often interested in the waiting time distribufighof the time to an event or,
similarly, the probability of an individual surviving to a particular time. In applications in
following chapters, | am interested in the amount of time it takes a fish to pass a dam after

it has reached it, and | consider the effect of adding mortality to the travel time model.

Waiting time distributions (or survival curves) are often formulated in terms of a hazard

function,A(t), which is the instantaneous failure rate at tigigen survival through More

precisely,

ACE) = lim P(t< T<t+At|T>1) (2.18)

At - 0 At
(Kalbfleisch and Prentiss, 1980). If we defifgt) Bd(1) (whiete) is the
cumulative distribution function (cdf) of(t) ), then
_ f®
At) = == 2.19
(t) =0 (2.19)

(Ross, 1983). The hazard function uniquely determbpgs

F(t) = 1—exp(—J‘0)\(u)du) . (2.20)
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Also,

f(t) = )\(t)exp(—ﬁ))\(u)du) . (2.21)

The simplest case is when the hazard function is a constant(tje= A , and the waiting

time probability density function is an exponential distribution

f(t) = AeM, (2.22)

This is equivalent to stating that a Poisson process withh igd@erns the waiting time to

the next event (Ross, 1993).

The case whera(t) is not a constant is referred to as a nonhomogeneous Poisson

process (Ross, 1993). Define the mean value function as

m(t) = ﬁ))\(u)du , (2.23)

and it can be shown that

F(t) = e™®, (2.24)

and

f(t) = A(t)e™O . (2.25)



3. General statistical treatment of spatio-temporal models

3. 1. Introduction

Since the statistical approaches | use are common to several applications, | will present
a general statistical overview that will be drawn upon in later chapters. In comparing
models to data, my primary concern is to estimate parameters and construct confidence
intervals around the estimates, determine the goodness-of-fit of the model to the data, and

compare alternative models and select the most appropriate one.

3. 2. Forms of data

The data used in my analyses come in several forms, and in this section | briefly present
the different data types. Data of fish travel times — the time taken for a fish to travel between
two points — is obviously temporal in nature, with the spatial component set as the length
of the river reach. Travel time data vary depending on whether fish are released as
individuals or groups. In group releases, a common mark identifies the fish, and the number

of fish, {n;: t=1,2,3,..k}, sampled at the downstream collection site during discrete time
intervals is observed. Clearly, is integer valued. Each time intervalAs in duration

(usually 1 day), and the final time intervkl,is an interval after the last fish has been

k
observed. AlsolN = Z n; is the total number of fish. Group covariates — such as date of
t=1

release and river flow — may be associated with the cohort.

Alternatively, a unique marking may distinguish individuals in a cohort. In this case, the

data are of individual travel timest:{i = 1,2,3,..n}, where n is the total number of

individuals observed; is positive valued; it can be continuous or discrete. Each individual
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may also be characterized by covariates such as river flow, date of release, and fish length.

In radio-tracking data, an individual’s position is followed through time. The data are
continuous in both time and space and can be denote{(Bst{= 0}. The vectorX can
be 1, 2, or 3 dimensional and can take on both positive and negative values. It will be
bounded by the system in which the fish are observed. In practice, the position of the
individual is noted at successive points in time so that time is discrete, and the positional
vector can be denoted aX¥{t = 0,1,2,..n-1}, with nthe number of observations. Ideally,
the time intervals are equal in duration, but this is not always the case. It is often more

practical to work with displacements; = X; - X;_1.

Hydroacoustic instruments observe the distribution of depths of fish in the water

column at a fixed location during a period of time. The data are usually dis&etes {
1,2,3,..n}, with Z; being the number of individuals observed in itheequally spaced

interval of the water column.

3. 3. Forms of the models

In all the models developed below, | start with a probability density fundiat), of
individuals through space and time. If the data are continuous in both time and space (e.g.,
radio-tracking data), then the model can be applied directly to the data in this form.
Otherwise, the model needs to be modified to be consistent with the data. For instance, the
model can be converted to a spatial distributir), of individuals at a particular point in
time, or a temporal distributiog(t), at a particular point in space. Also, the data are often
discrete — for example the number of fish collected at a dam during a discrete time interval.

The model can be converted into a discrete form by integrating. For example:
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X; + AX

pi= [ f(Xito)dx (3.1)

X
describes the probability of a fish occurring in the discrete spatial inteywat {x) at time
to. If a total ofN organisms are observed, then
n, = N Op, (3.2)
is the predicted number of individuals occurring in itiweinterval. In this form, thé; 's

follow a multinomial distribution

3. 4. Farameter estimation

Consider a vector of random variabl¥ss (X1,X,,...X;,), representing any of the types
of data described above. Assume tiat drawn from some distribution whose form is

known but parameters unknownf{x;0)  Xfis continuous,p(x;0) X is discrete.

Parameter estimation is the process of choosing a set of para@neters, , such that the model
is as consistent as possible with a vector of observations of the random vaxiables,

(X1,%,...%n). While a wide variety of methods exist for estimating parameters, | have

employed two techniques: generalized least squares, and maximum likelihood estimation.

generlized least squass

Least squares parameter estimation is commonly used in regression analyses (Draper
and Smith, 1981; Neter, et al. 1985; Seber and Wild, 1989). | have also used it in

applications where the model is applied to frequency data. The model takes the form

n, = NOp(x;0) +¢ = A +¢;, (3.3)

wheren, is the observed number of individuals in itheclass,N is the total number

observed in all classeg, is the probability (under the model) of an individual falling in the
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ith class, and is the error term. Generalized least squares is often used when there are
unequal variances among the error terms (Draper and Smith, 1981; Seber and Wild, 1989).
With generalized least squares, the following equation is minimized with respect to the

parameter vectof

k
S@x) = > w;(f —n;)? (3.4)
i=1

wherek is the number of classes, ands the weight associated with that class. To account
for unequal variances, the weighting functgrs 1A is often used, whesgis the variance

of theith class.

maximum liklihood

Maximum likelihood estimation proceeds by maximizing the likelihood function,
L(9;x) , with respect to the parametebs.can be either continuous or discrete. The

likelihood function is defined as (Mood, et al., 1974; Bickel and Doksum, 1977):

k
L(8:x) = [ f(x:0) (3.5)
i=1

for continuous functions. For discrete models(x;;9) is substituted ffor;0)
Maximum likelihood estimation involves selecting the parameter vettor, ,which is “most

likely” to have produced the data. In other words,

L(8:x) = sup( L(&;X)) . (3.6)

If L(@;x) is differentiable with respect to ti&'s, then it can be maximized by setting

p
oL _
izla—ei =0, (3.7)
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where p is the number of parameters being estimated. Otherwi$8;x) can be

maximized numerically.

It is generally easier to work with the log of the likelihood function,

k

1(8:x) = logL(€:x) = % logf(x;:0) . (3.8)
i=1
With discrete data, based on the multinomial distributicd) becomes:
k
() = c+ Z nlogp;, (3.9

i=1

wherec is a combinatorial constant that is unaffected by the choice of parameters.

performance of pameter estimates

In comparing competing parameter estimation methods, the most commonly used

criteria for assessing the performance are the bias and the precision of the parameter
estimates (Bickel and Doksum, 1977). Bias is definel [#&— 6] , Vehere s the true

value of the parameter afd is the estimated value. Obviously, as small a bias as possible

is desirable. A common definition of precision is the mean squared I%&),(given by

E[é —80? . MSEis equal to the variance of the parameter estimate plus the bias squared

(Bickel and Doksum, 1977), so if the estimate is unbidd&Eis equal to the variance. In

many cases, it is possible to determine these values directly; in cases where this is not
possible, simulations can be used. In the last section of this chapter, | discuss simulation

procedures.

3. 5. Confidence intevals

Confidence intervals are useful to reveal the variability associated with the parameter
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estimates and can be used for statistical inference. In some cases, theoretical confidence
intervals based on asymptotic assumptions are available. In other cases, approximate
confidence intervals can be constructed using bootstrap methods (Efron, 1982; Efron and

Tibshirani, 1986).

| use the following procedure to construct 95 percent bootstrap confidence intervals. For
each cohort of sizB, the individuals are sampled with replacenménimes to produce a
new cohort. For each cohort, | then estimate the parameters following the same procedures
as with the parameter estimates of the original data. This is repeated 10,000 times, and for
each iteration, the parameter estimates are retained. For each parameter, the 10,000
estimates are sorted, and the estimates that fall at the 2.5th and the 97.5th percentiles are

used to construct a 95 per cent confidence interval.

3. 6. Goodness-of-fit

Goodness-of-fit tests are used to determine how well a proposed model fits a particular
data set. The procedure is to first compute a test statistic based on the deviation of the data
from the model (with the parameter estimates) and then compare it to a theoretical or
empirical distribution based on the assumption that the model is true. A rough probability
of observing the particular data set, given the model is true, can then be determined. If the
probability of observing the data is too low, the model is rejected. | should note that | use
goodness-of-fit tests to get a rough idea of a model’s performance — there is no threshold
value below which a model is deemed not to work. In most cases | apply models to a series
of data sets, and consistently Igwalues is evidence that model is not appropriate. The
main purpose of the tests is to assess whether a model is useful in describing observations

and hence useful for predictive purposes.

Two types of goodness-of-fit tests have been commonly employed: chi-square type tests

and tests based on the empirical distribution function (EDF), although other classes of tests
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have been used (D’agostino and Stephens, 1986). Chi-square tests are used when data are

grouped into discrete classes, and observed frequencies are compared to expected

frequencies based on a model. Although Pearst@ntsst is the most familiar, other tests

fall into this category, such as ti&etest, Tukey’s test and the Rao-Robson test (Moore,
1986). In all cases the test statistic is formulated such that it follows a chi-square
distribution, and because of this, these test are usually convenient to use. Tests based on the
EDF are used most often with continuous data. An empirical density function is
constructed by ranking the data, and this is compared to the model's cumulative distribution
function CDF). The test statistic is based on the deviation oEfBE from theCDF, and

its distribution is obtained by Monte-Carlo simulations. The most familiar test of this type

is the Kolmogorov test (Conover, 1980).

chi-squaed goodness-of-fit test

The most commonly used chi-squared test is Pear¥dmést (Pearson, 1900), which
compares expected frequencies to observed frequencies in discrete cells. If the model is
fully specified (i.e., no parameters are estimated from the data), then the cell probabilities

can be obtained by integrating over the cell widgh,

P = J’f(X)dX- (3.10)

The expected frequency in cels then computed as

E(n) = NOp, (3.11)

whereN is the total sample size. Pearson showed that the test statistic

k+1
_ (E(n)—n;)2
X2 = > E(n)

i=1

(3.12)
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asymptotically follows exz(k) distribution

discrete class data

These tests are particularly useful when the data are the form of the frequency of
individuals falling into discrete classes. An issue with both these tests is how to lump the

classes. If theE(n,) ’s are too small, the tests are not valid (Cochran, 1952; Roscoe and

Byars, 1971). In all cases, | lump the data such B{at) > 1.0 fics. all

using hi-squaed tests with continuous data

Using chi-squared tests in situations where the data are continuous involves a trade-off:
the tests are flexible and easy to use, but because the data must be placed into discrete
classes, information is lost and the tests are not as powerful as some alternatives (Moore,
1986). One advantage of using these tests with continuous data, though, is that it is possible
to have equiprobable cells, improving the efficiency of the test (Mann and Wald, 1942;
Cohen and Sackrowitz, 1975). Mann and Wald (1942) recommended the following

eqguation for choosing the number of cdllsat significant leved:

[12N?

k = 4Q(G)ZD’

(3.13)

wherec(a) is the (1ea)th quantile of the standard normal distribution. Other people (e.g.,
Schorr, 1974) have argued that fewer cells than this are optimal, and in light of this, Moore
(1986) recommends using a value kahat is between that given by equation (3.13) and
half that. | will use equation (3.13) with = 0.05; since equation (3.13) decreases with

decreasingt, this practice will cover the range @f 0.05 and lower values.

using di-squaed tests when pametes are estimated in the model

At first glance it appears that chi-squared tests can readily accommodate models that
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have parameters estimated from the data. The standard approach is to subtract one degree
of freedom for each parameter estimated. As Fisher (1924) showed, however, the type of
estimation procedure used affects the outcome of the goodness-of-fit test. The appropriate

parameter estimation method to use is the minimum chi-squared criterion. This involves

minimizing theX? statistic with respect to the parameters and is achieved by solving the

following equation:

K
)3 %%pi(e) =0,p=1,2, .. (3.14)
i=1 ! P

wherer is the number of parameters estimated. This method has several drawbacks. First,
this equation is difficult to solve — analytical solutions are rarely available, and the response
surface is not smooth. Second, chi-square estimation procedure is rarely used, and ideally
the parameter estimates used in the goodness-of-fit tests are those obtained from the
parameter estimation part of the data analysis. Fortunately, using parameter estimates from
other methods (such as maximum likelihood) results in tests that are conservative — i.e.,
they reject the model too often. Thus there are three choices: 1) use the minimum chi-
squared criterion and accept its downfalls, 2) use another estimation method and use a
conservative test, or 3) use a test that includes a correction factor, such as the Rao-Robson

test (Rao and Robson, 1974).

tests using the empirical density function

When data are continuous and the model is fully specified, tests involvie@pthare
easy to use and generally more powerful than chi-squared tests. In cases where parameters
are estimated from the data, these tests become more difficult to implement, and the theory

is not as well developed (Stephens, 1986).

As stated previously, these tests are based on the deviationEDieom the CDF
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of the model distribution. The empirical density function is constructed by ranking the

observations and then computing

F.(X) = % (# of observations x), n =0, 1, ..., N. (3.15)

This results in a step function that increases it/ height at each observation. This is
compared to the mod€DF, F(X). The most commonly used statisti®isfirst introduced

by Kolmogorov (1933):

D = sup|F,(X)-F(X)| , (3.16)

which is the largest vertical distance betw&g(X) andF(X). Other statistics have been
proposed that involve the squared difference betgéx) andF(X) integrated over the

entire range oOx.

In some cases it is more convenient to work with data after they have been transformed

such that

Z = F(X), 0<z<l. (3.17)

If the model is trueZ will be uniformly distributed on [0,1]. If; is theith-ranked

transformed data point, then

Li i—1)0
D = max;l—n—z(i),z(i)—%% : (3.18)

The basic goodness-of-fit test is as follows. We would like to test the hypothesis that a

random sampleq, Xo, ..., Xy, came from a fully specified distributidf(X). In other words,

Ho: the random sample is froR(X).

Ha: the random sample is not frdagX).

The procedures are followed as outlined above, and the resulting test statistic is compared
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to its tabulated distribution. A value falling in the upper extreme of the distribution is

evidence against the null hypothesis.

EDF tests with estimated panetes

When parameters are estimated from the d&d&; tests become less general. If the
parameters are location (e.g., the mean of a normal distribution) and/or scale (e.g., the
variance of a normal distribution) parameters, the distribution ofEDDE statistic is
dependent on the family of distribution in question but not on the particular parameter
values. This is the case with the normal and exponential distributions, among others, and
these distributions of test statistics for many of these families have been tabulated. In cases
where a shape parameter is estimated (e.g., Gamma and Inverse Gaussian distributions), the
distribution of test statistics is dependent not only on the family of distribution but also on
the true parameter values, making the use of these tests quite cumbersome. One way to
overcome this is to create the distribution of test statistics with Monte-Carlo simulations as

they are needed.

3. 7. Model discrimination, model selection, generalized lkihood ratio test

Several alternative models are often proposed to explain the same data, and objective
criteria are needed to choose among models. The alternative models may be nested or non-
nested. Nested models are constructed such that a simpler model can be obtained from a
more complex model by eliminating one or more parameters from the more complex
model. Thus choosing among models reduces to determining the appropriateness of the
additional parameters. Non-nested models are not related in this way, and model selection

must be based on some other criteria. | will not deal with non-nested models in my thesis.

While adding features to a model is often desirable, the increased complexity comes

with a cost. In general, the more parameters contained in a model, the less reliable are
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parameter estimates. Criteria to select among models must weigh the trade-off between
increased information and decreased reliability. | present three methods, all of which deal
with the likelihood function, and because of this, model discrimination is related to

parameter estimation. | begin with a discussion of nested models and then show how the

three methods choose among models.
Beginning with the simplest case, a null mod¢k;0,) , specified by the parameter
vector§, = (04, 0,, ...,0,) ,is compared to an alternative mobigX;0 ,) , Which shares

the k parameters of the null model but also contains an additional para@gter, . In
comparing the null to the alternative hypothesis, we are determining the appropriateness of
adding the additional parameter to the null model. In other words, we are testing the
following hypotheses:
Ho: Bk+1 = 0, versus

This is a two-sided test because the null hypothesis is rejed&gd,if is determined to be
significantly greater or less than O (or another pre-determined value). This can be extended
to comparisons of models that differ by more than 1 parameter, with the alternative model
having parameter spa&g, = (64,6,,...,6,,0,,4,...,6,,,)

The likelihood function is based on parameter values and the data. As with parameter

estimation, parameters vect@& zi:nd are chosen to maximize the likelihood function.

In other words,

L(B0ix) = supL(§y:X)

L(8aX) = supl(8,X) - (3.19)
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The three model comparison methods compare these two likelihoods.

genenlized likelihood @mtio test

The generalized likelihood ratio test (GLRT) (Mood, et al., 1974; Bickel and Doksum,
1977; Hogg and Tannis, 1983), as its name implies, is based on the ratio of the likelihoods.

Define a random variabl with realizations)A(x), based on the date,

supL(0¢;x)

M) = supL(Q,:X)

(3.20)

wherelL is the likelihood function as in equation (3.8). Note thatA < 1.0 . This is
because the null hypothesis (baseddgn ) is nested within the broader hypothesis (based
on @), and\ will always be <=1.0. Also, supwill always be >= 0, sa >= 0. In general,

A << 1.0 is grounds for rejecting the null hypothesis.

The likelihood ratio is useful because of the following result (Bickel and Doksum,

1977). First, assume that Xy, Xo,X3,... X, is @ sample from the probability density function

or discrete density functiof(X;8,) with, k1l dimensional parameter vector that

takes on values unrestrictedR™L. Also assume that:

1) The maP - f(x;0) is smooth hfor eachx;

2) The maximum likelihood estimaé is consistent (i.e., the estinate
becomes arbitrarily close to the true value gets large).

Then, withA formulated as above, 8., = O (the null hypothesis is true), the asymptotic
distribution of-2logA is approximatel)(2 with 1 degree of freedom (Mood, et al., 1974;

Bickel and Doksum, 1977). Thus a test of size

RejectHyif -2log\ > x7_, (1),
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where x#_,(1) is the (Ix)th quantile of the chi-square distribution with 1 degree of
freedom. This test can be extended to the case where the difference between the dimension
of the null and alternative models is greater than 1. If the test is formulated as above, and
the same assumptions are met, thglog/\ is approxirr)(;@twyh r degrees of freedom,

wherer is the difference in dimension between the two models.

Akaike’s information criterion

The other two methods operate under the premise of parsimony — simpler models are
favored over more complex ones. The first is called Akaike’s information criterion (AIC)

(Akaike, 1973). For each alternative model proposed to describe data,

AIC, = 2logL(§;;x)—2(k+r,) , (3.21)

wherek + r; is the number of unspecified parameters inititnenodel. In a sequence of
nested models, the model with the largest;Al@ue is chosen. Compared to the GLRT
method, the AIC method assigns proportionately more penalty for models of increasing

complexity.

Bayesian information criterion

Both the GLRT and the AIC method have a similar drawback — as the sample size
increases there is an increasing tendency to accept the more complex model (Raftery,
1986). The Bayesian information criterion (Schwarz, 1978) takes sample size into account.
Although the BIC method was developed from a Bayesian standpoint, the result is
insensitive to the prior distribution for adequate sample size.Thus a prior distribution need
not be specified (Schwarz, 1978; Raftery, 1986), which simplifies the method. For each

model, The BIC is calculated as

BIC, = 2logL(8;;x)—(k + r;)log(n) , (3.22)
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wheren is the sample size. As with the previous method, the model is chosen with the
largest BIC. If just two alternative models are being compared, the BIC from the simpler
model can be subtracted from the BIC from the more complex model. A positive value
indicates that the more complex model should be favored, while a negative value favors the

simpler model.

3. 8. Statistical simulations

Simulations are a means to answer some of the questions raised about the statistical
procedures outlined in the above sections of this chapter. The general procedures for the

statistical simulations is:

1) specify the modef (x;8) and choose parameter vagiés,

2) draw a random samplé€x,, X,, ..., X,) , of sizérom the specified

distribution;

3) perform the statistical procedure — estimate parameters, compute test
statistics;

4) repeat steps 2 and 3 many times to generate distributions of parameter
estimates and test statistics;

5) use these distributions to compute bias or mean squared\86r ¢f
parameter estimates or to compare the distribution of test statistics to the
theoretical distribution.

Simulations can be performed under a variety of conditions, e.g. different sample sizes or

parameter values.

After n simulations are run, the bias of a parameter estimate can be formulated as:

S [6;—60 . (3.23)

0; is the parameter estimate from tile simulation, anddU is the true value of the
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parameter. Th®ISEof the parameter estimate can be computed as

MSE =

Sk

S 16602 (3.24)
i=1

After a distribution of test statistics is generated, it can be compared directly to the
theoretical distribution. In doing so, the consistency of the two distributions can be

determined.

3. 9. Types of data

In this section | briefly discuss the methods used to mark and track juvenile salmonids

and the type of information available from each.

freeze-band

Freeze branding is an efficient way to mark a large group of fish with the same
identification code (Mighell, 1969). A metal branding tool is cooled with liquid nitrogen,
and the fish are pressed against the tool. This method does not distinguish among
individuals, but release groups can be distinguished. This allows for the determination of
release site and release time of recaptured fish. In general, the data acquired from freeze

brand fish are the number of fish collected during discrete collection periods.

PIT tag

PIT (passive integrated transponder) tags are used to monitor individual fish. The tag,
12 mm long, is inserted in the fish’s body cavity and contains a microchip that is
programmed to contain individual fish identification codes (Prentice, et al., 1990). At
monitoring sites the tag emits a signal in response to excitation from an interrogation
system. The signal is decoded to yield information about instantaneous passage times of

individuals. The tags do not seem to adversely affect the fish in terms of survival or
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swimming performance (Prentice, et al. 1990).

radio-tracking

Radio-tracking has been used successfully in the past to monitor movements of
migrating juvenile salmon. Atlantic salmo®dmo salay have been radio-tagged and
monitored in the northeastern United States (Stasko, 1975), Canada (Brawn, 1982),
Norway (Holm, et al., 1982) and Scotland (Tytler, et al., 1978). Several studies have also
been performed on juvenile salmonids in the Columbia River Basin (Giorgi et al., 1985;
Stuehrenberg et al., 1986). Two qualitatively different types of studies have been
performed. In the first type (e.g., Giorgi et al., 1985), individual fish are followed with their
position being noted at relatively frequent time increments to create a radio track. This
allows one to analyze individual behavior on a relatively fine scale. The other type of study
(e.g., Stuehrenberg et al., 1986) involves releasing a group of fish and recording the arrival
time of individuals at receivers located at fixed sites downstream. Many more fish can be
included in this type of study, with information about the distributions of groups of fish

being obtained.

The question of whether internal radio tags affect the migratory behavior of juvenile
salmon has been addressed in at least two studies (McCleave and Stred, 1975; Stuehrenberg
et al., 1986). Both studies determined that there is no effect of internal radio tags on the
swimming stamina of juvenile salmon, although buoyancy may be affected. Also, the latter
study made qualitative observations of swimming behavior and concluded that there was

no difference in the behavior of fish with dummy tags and control fish.

hydmacoustics

Several studies have employed fixed location hydroacoustic transducers to monitor the

abundance of juvenile salmonids (Johnson, et al., 1985; Dawson, et al., 1984b). The
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procedure is to attach transducers at the base of a dam and to point it upward through the
forebay. The instruments yield an estimate of the density of juvenile salmonids migrating
at specific depths (Dawson, et al., 1984a). The equipment cannot distinguish among

species.



4. Basic travel time model

4.1. Introduction

The amount of time juveniles spend migrating downstream in rivers has several
implications for salmon populations. From a behavioral standpoint, the timing of migration
has evolved for individual stocks to take advantage of river currents while avoiding hazards
such as predation. Also the migration timing is coordinated with the smoltification process
so that the fish reach the saltwater environment when they are physiologically prepared

(Folmar and Dickhoff, 1980).

From a management standpoint, understanding and modeling juvenile salmonid travel
time is important for several reasons. The ability to predict the arrival times of populations
of fish at dams will aid in directing river and dam operations to enhance fish survival. For
instance, spilling fish over the top of dams is considered to be a safer passage route than
through the turbines. However spilling water for fish passage involves a cost of lost
electricity generation, so predicting the abundance of fish in front of dams can help to make
this process as efficient as possible. Also, there is the question of whether it is possible to
speed up migration rate. Since river currents are thought to be a primary source of
downstream movement (Smith, 1982), the reduced river velocity created by dams can
potentially greatly increase the travel times of the juveniles. In fact, Raymond (1978)
estimated that the construction of dams may have doubled the travel times of some stocks
in low flow years. A proposal that is receiving serious consideration is reservoir drawdown.
This involves lowering reservoir levels to try to enhance river velocities. Understanding

how fish respond to these conditions will be crucial.

In this chapter, | develop a basic travel time model where migration rate is considered
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to be constant, and all members of a cohort behave identically. In the next chapter, |
incorporate behavioral components into the travel time model, such as travel time related
mortality, migrational delay, and diel variation in migration rate. In chapter 6, | allow for
population heterogeneity, with the migration rate of individuals being determined by

factors such as fish length.

4.2. Development of basic model

overviav of modeling downstam migation

Most travel time experiments involve collecting a group of fish, marking them with a
tag and then releasing them as a group from a single release point. The fish then migrate

downstream and are collected at a downstream collection site, often a dam (see Figure 4.1).

-
——— —

>
? river flow ?

rel_ease c_oIIection
point site

Figure 4.1 A schematic diagram of the travel time problem.
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The river is treated as 1-dimensional.

The modeling effort is directed at determinig(), which is the probability density
function for the distribution of arrival times at the downstream collection site. Also of

interest is the position of an individual through time. This is denoted by the random variable

X(t) with X O R andt > 0. X is usually further restricted by the physical domain of the
system being studied. With a release point=at), and a collection site &=L (as in
Figure 4.1), it is assumed thakb < X <L . Also of interegi(ist), which is the density
function for an individual occurring at positiomat timet. If there areN individuals in a

cohort, thenN Op( x 1) is the population density. Because individuals leave the river reach

IX p(x t)dx<1.0.

The travel time of fish through a reach can be thought of in two ways, both of which
yield equivalent results. In terms of the procéd} the travel timd is modeled as the first

passage aX(t) from the release point to the collection point. In other words,
T = inf{t:X(t) <L|X(ty)= xo} 4.1)

(Sacerdote, 1988). In terms of the density fungbiest), the passage of fish through a reach
is modeled in terms of the loss of density at an absorbing boundary. In other words, an

absorbing boundary is imposedXat L, and thus

p(L, t) = 0. (4.2)

The theory of boundary crossing has been extensively developed in the mathematical
and statistical literature (e.g., Sacerdote, (1988)), where there has been an effort to derive
generalizations about a variety of processes crossing different classes of boundaries. A
major application in the statistical literature has been the development of sequential

analysis (Siegmund, 1985), where rejecting a hypothesis is related to the probability of a
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process crossing a boundary. In the biomedical literature, there has been a great deal of
activity in applying first passage problems to models of neuronal firing (Lanska, 1988).
Boundary crossing models have a lot of potential for ecological applications, where many
processes are phenological in nature. There have been a few applications in this area,
including applications to the timing of instar development in insects (Kemp, et al., 1989)

and population extinction (Dennis, et al., 1991).

In the following section | present some general results for first passage problems. | then
focus on the specific case where the parameters are constants. The remainder of the chapter

is devoted to statistical methods and applications to data.

assumptions

Several assumptions must be made in order to apply the basic travel time model derived
in the following section. In later chapters, | expand the model so that these assumptions are
not necessary. The first assumption is that the population of fish is independently,
identically distributed. Second, the migration process is time homogeneous — there is no
diel or seasonal variation in the migratory behavior. Third, each individual has an equal
probability of being sampled at the downstream collection site. This means that survival
probabilities are identical among the individuals, and the probability of recapture is also

identical.

model dgelopment

The travel time model begins with the assumption that the spatial distribution of fish
through time is described by an advection-diffusion equation. Several people have
suggested using this equation to describe the migration of fish (Saila and Flowers, 1969;
DeAngelis and Yeh, 1984; Anderson and Schumaker, 1988; Hiramatsu and Ishida, 1989).

Since the available data is of the distribution of fish passing through dams (or collected at
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traps) through time, the advection-diffusion equation is used to derive the distribution of
fish passing a fixed point through time. In this temporal form, the model can be compared

to data to determine the validity of the model and estimate parameters.

The advection-diffusion equation is expressed as:

Z
op _ _ 0p, 0% p
at - "ax T 22 (4.3)

The parameter determines the rate of downstream movementcatgetermines the rate
of population spreading. As shown in the Chapter 2, with natural boundaries and a point

release aty = 0, the unique solution of equation (4.3) is

—rt)2Q
PO = ———exdfFUSIE (4.4)
It is not realistic, however, to assume unrestricted boundaries in natural systems. In the
case of the Columbia River, dams form delineations, and fish populations are sampled as
they pass through dams. To account for this, an absorbing boundary is imposed at the site
of a dam. As fish in the population pass a dam, they are “absorbed” from the reservoir and
passed through the dam. In terms of the model, we assume that fish are rel¥asé€d at

and are collected & =L. The boundary conditions are now

p(_oo’ t) = p(L! t) =0.

Note that there still is a natural boundary upstream from the collection point. This allows
fish to move upstream from their point of release. With these boundary conditions and the

same initial conditions as above, the solution to equation (4.3) is now:
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o(x, 1) = 1 2 Ee p—(x—rt) F1%Lr (x— 2L—rt) 4.5)
210t O 20 t 20 t

(Goel, Richter-Dyn, 1974). Note that this is similar to equation (4.4) but with an added term
that accounts for the loss of densityXat L. An example of this distribution is presented
in Figure 4.2 withL = 100. Notice thap(x,t)= 0 beyondX = 100 and that a$ increases

the area undgy(x,t)decreases corresponding to the “loss of probabilit)X at100.

84 | — t=5
---- t=10
Tol —— t=15
N —— t=20
o | ,
N
X 1
=
o |
—
0 -
O -
-20 0 20 40 60 80 100
distance

Figure 4.2Plot of equation (4.5) for various values.of he parametersando are set at 5 and
8, respectively, ant is set at 100.

Since the loss of density at the absorbing boundary corresponds to fish passage at the
dam, we can use equation (4.5) to derive an arrival time distribution. The first step is to
determine the probability of remaining in the rivé(L, t) , at a given point in time. This

is achieved by integrating equation (4.5):



51

L
P(L, t) = J’p(x, fdx

—00

—rt rtD Lrg L—rt
[CD Syt OZBDD = a . (4.6)

@ is the cumulative distribution of the standard normal distribution. To derive a continuous
time pdf for the arrival time distribution & = L for a group of fish released 4t= 0,

equation (4.6) is differentiated to determine the rate of loss of density:

9 = —P(LY) |

(L- rt)2
4.7

(Cox and Miller, 1965). Plots of this distribution for various valuesarfdo are contained

in Figure 4.3. Witho andL held constant, asdecreases the mode of the distribution moves
to the right, and the distribution flattens out. WitandL held constant, increasirghas

the effect of moving the mode to the left and flattening the distribution. To determine the

probability of arrival aiX = L during a discrete time interval one integrates equation (4.7):

t2

_ _ A —rt rtD L—rt
p(ty ty) tJ;Q('[)dt [CD B'D O on

(4.8)

Further complexity can be added to the model by allowing the parametsi® to vary

with time in response to such factors as flow conditions and fish maturity.

It is common to reparameterize equation (4.7) witk L/r and A = L%0?. This

parameterization eliminates reach length,from the equation. Equation (4.7) then



52

0.3

0.2

a(t)

0.1

0.0

0.3

0.2

a(t)

0.1

0.0

Figure 4.3 Equation (4.7) with various parameter values. In the top
figure,o is set at 25, andis varied. In the bottom plat,is set at 25, and
is varied. In both plotd, = 120.
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becomes:

—u)2
g(t;u, A) = lzi‘nsexpg')\(ztuzf) E (4.9)

in the continuous form, and

t2

t 1—ut
P(ty tit A) = [ e el LREPSY p%z)\ ri-ut a (4.10)
tl

et DJA_t

in the discrete form. With this parameterization, equation (4.9) has been called the “inverse

Gaussian” distribution (Tweedie, 1957a, 1957b; Folks and Chhikara, 1978).

In the appendix to this chapter, | present some useful derivations related to first passage
models. In appendix 3.a, | show how to derive first passage distributions with the “method
of images,” an intuitive approach that produces useful results. In appendix 3.b, | show how
to derive the passage pdf (equation (4.7)) using a Laplace transform method. In appendix
3.c, | develop a numerical approximation for the discrete version of the passage pdf
(equation (4.8)) that overcomes the “exponential overflow” problem involved in computing
the equation. In appendix 3.d, | demonstrate a method for generating inverse Gaussian

variates, a method | use in the simulations in the following section.

4.3. Statistical methods

parameter estimation and confidence intervals

The parameter estimation methods vary depending on whether the data are discrete or
continuous. Also, for both cases, alternative methods are available, so | will present

alternatives for each.

* continuous case
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The maximum likelihood estimators (mles) for the two parametarglc were first

worked out by Shroddinger (1915). They are:

(4.11)

(4.12)

wheret; is the observed arrival time of tha individual,t is the average arrival time of the

group, andN is the number of individuals in the cohort. The maximum likelihood
estimators of these two parameters are independent (Chhikara and Folks, 1989), and much
of the statistical inference involving the inverse Gaussian distribution parallels that of the
normal distribution. Notice that the mle fors the average migration rate and the mle for

o involves the difference between the harmonic mean and reciprocal of the arithmetic mean
of the travel time. While the mle foris unbiased, the mle af is biased. An (uniform

minimum variance) unbiased estimator @ois

N
~_ |1l <_10
“‘LJN—%R 18 (4.13)

(Folks and Chhikara, 1978).

From equations (4.12) and (4.13), the biaé of can easily be shown to be

A N-1
bias(6) = o —-N——lg. (4.14)
Plots of this equation for several values@fre contained in Figure 4.4. The slopes of these

curves are very steep for small sample sizes but flatten out for larger sample sizes.

For the continuous version of the travel time model, theoretical confidence intervals for
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Figure 4.4Plots of the bias of the parameter estimétor versus sample size for
several values af.

the parametersando are available (Tweedie, 1957a, 1957b; Folks and Chhikara, 1978;
Chhikara and Folks, 1989).To construct confidence intervats ¥ag begin by noting that

the statistic

T = r{~N —;E;%— L/1)] (4.15)

follows a Student’s distribution withN-1 degrees of freedom. Based on this information,

we can determine

Pr[T>a] = Pr{T<b] = a/2. (4.16)

Because Studenttdistribution is symmetrich = —a . Thus, a (uniformly most accurate-

unbiased) 100(1+) percent confidence interval is
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ac | t 7. aé | t 1
= + = [— ]
%[1 L n—J’r[l L n—l}D’ (4.17)
it 1-32 niltl ,»>0, and
L tV 10
%)'f[“ —JD
otherwise.

For the confidence interval of we first note that

— UXf_1 (4.18)

(Tweedie (1957a)). Equation (4.18) is then used to determine aarath such that

A2 A2
prNO°, 0= p NI <bl=as2.

Og2 O " g2

A 100(1a) percent confidence interval forcan then be constructed as:

% S0 /N0 (4.19)

Notice that the confidence interval fois determined by the estimatesrandao, but
the confidence interval faris determined only by the estimatemfAlso, as expected, the
confidence intervals afando are dependent on sample size, with the confidence intervals

decreasing aN increases.

In Figure 4.5, | use equations (4.17) and (4.19) to construct plots of the length of the 95

percent confidence intervalsradindo versus sample size for a variety of parameter values.
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Figure 4.5 Plots of expected 95 percent confidence interval lengths versus sample size for the
parameters. In all plots = 100. The first two plots are based on confidence intervais dod the last
ona. In the first plob = 10.0, and is varied. In the last two plots= 10.0, and is varied.
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In these plots, | use the expected values of @nd , so the confidence intervals can be
thought of as “expected” confidence intervals. In all cases, L setl00. Since the
confidence interval far is affected by the values of batlandao, | made two plotsin the

first plot, | seto = 10.0 and vary; in the second plot | set= 10.0 and vary. Since the
confidence interval of is unaffected by, | made a single plot in whiah is varied. The
behavior of the plots is quite similar in all the cases. For small sample sizes, the slope of
the curve is steep and negative.¥y 50 or so, the curve has substantially flattened. This

information is useful in determining appropriate sample sizes for the data analysis.
* discrete case

When data are discrete time observations, closed form solutions of the mles are not
available. The mles can be determined, however, by numerically maximizing the likelihood
function. With the discrete form of the model (equation (4.8)), the log likelihood function
can be formulated based on a multinomial distribution:

k

I(r,o;n, Ny, ...un) = C+ Z nlogp;, (4.20)
i=1

where the indexrefers to the time intervak,is the total number of time intervalg,is the
number of observed individuals in ttik interval,p; is taken from equation (4.8), ands
a combinatorial constant unaffected by the choice of parameters. To estimate the

parameters, | minimize equation (4.20) with respect to the parameters using a downhill

simplex technique (Nelder and Mead, 1965; Press et al. 1988).

Another approach for estimating parameters when the data are discrete is generalized
least squares or weighted least squares. Based on the multinomial distribution, the variance

of theith class is



59
Vi = Np(l-p), (4.21)
and to account for unequal variances, the weighting functian=sl/v;. Thus to estimate

the parameters, the following equation is minimized with respecanolo:

(Np| —n; )2

S(r,o;ng, Ny, .., Ny Z Np,(l o)

(4.22)

Later in this chapter | compare these two estimation methods using simulations.

When the data are discrete, parametric confidence intervals are not available. In this
case, approximate confidence intervals can be constructed using the bootstrap method as

described in chapter 3.

4.4. Simulations

Simulations are often useful in analyzing statistical procedures (Ross, 1990). In many
cases, the statistical properties of a distribution can not be or have not been worked out; this
is true of the discrete time form of the travel time model and the more complex continuous
travel time models developed in later chapters. In these cases, simulations can determine
some of the statistical properties. The results of the simulations are useful for choosing

among alternative statistical procedures and in determining sample sizes.

A convenient method for generating inverse Gaussian variates has been developed
(Michael, et al., 1976) and is quite useful for simulating the basic travel time model,
equation (4.7). The details of the procedure are presented in appendix 3d. A general
simulation procedure is to gener&tendividuals in a cohort and then perform statistical
procedures such as parameter estimation or a goodness-of-fit test on the cohort. This is the
repeatedh times to determine properties associated with the parameter estimation method

or the appropriateness of the goodness-of-fit test.
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continuous case

Since many of the properties associated with the continuous travel time model are

available in analytical forms, simulations are not required to determine properties of

parameter estimation. A questions remains, however, aboxtt gewdness-of-fit test. This
test, used with maximum likelihood parameter estimates, is biased, particularly for small
sample sizes (Moore, 1986). It will be helpful to determine the extent of this bias and how

it varies with sample size.

Before continuing discussion of the simulation procedure, though, | should note an

artifact of using th&? test with continuous data. Since the width of the bins (i.e., the values

of the g’s) is predetermined by sample size, not by the model or particular parameter

estimates, the test statisti® takes on discrete values. This is further exacerbated by
choosing all theg'’s to be the same and is particularly noticeable at small sample sizes.
Figure 4.6 demonstrates this effectfo= 20. In this plot | treat the parameters as known,

so the test should be unbiased. The problem that arises is that it is difficult to determine if
a test is biased becays®&alues will also be discrete and will be influenced by where they
fall in terms of the discrete jumps. To alleviate this, | develop the following procedure to

smooth out the jumps. The first step is to generat®horts of sizé\, and for each cohort
determine a test statistix?, (i = 1, 2, ...n;). These test statistics are then ranked to give

X2's (r= 1, 2, ...,n,). This entire procedure is repeatedtimes, and an averag&, for

each of the, ranks X2, , is calculated. The¥é, ’s are continuous and should more closely

follow the theoretical distribution. Figure 4.7 demonstrates the output of this procedure for
the same sample size and parameter values in Figure 4.6. Notice that the distribution of the

test statistic more closely follows the theoretical distribution.
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Figure 4.6 A plot of the cumulative distribution of thé? statistic versus thi? statistic withL =
100,r = 10.0,0 = 10.0 andN = 20. The dotted line is the theoretical curve. The solid line is based on
simulations withn = 1000.

To determine if a test is biased, one approach is to begin by choosingraeveral

a’'s (0.0sa<1.0). If the test is unbiased, then thevalues associated with the
(1.0—a) hy th rankedX?, should equal (1.@). If this value is greater than (1.@),

the test is considered to be liberal; that is, it does not reject the model enough. If the

opposite is true, the model is considered to be conservative.

Figure 4.8 contains the results of simulations of the travel time model. | follow the same
procedure as above, except the goodness-of-fit test is performed with estimated parameters.

| vary the cohort size from 10 to 200 in increments of 10, wjith n, = 1000. In the top

graph,a = 0.05, andx = 0.10 in the bottom graph. In both cases, the test appears to be
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Figure 4.7 Same plot as previous, but with averag@dvalues from the simulations. For this
simulation,nq = 1000 and, = 1000.

unbiased folN = 20 .

discrete data

In this section, | work with the inverse Gaussian distribution (equations (4.9) and

(4.10)), the reparameterized version of the basic travel time model. This distribution has

two parametergy andA (recall thap =L/r andA = L2/02), and for these simulations | have
chosenu =10.0 and\ = 100.0, roughly corresponding to observed values. The sample size,
n, is varied from 25 to 500 in increments of 25. The procedure is as follows. First, create a
sample population by selecting individuals at random from the inverse Gaussian
distribution. | use the procedure described by Michael, et al. (1976) to generate variates.

These individuals are put into discrete classes (1 day intervals), and model parameters are
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Figure 4.8Plots of thep-value associated with the (1.@) nqth rankedX?, value (see text) versus
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estimated based on the sample population. This procedure is then repeated 10,000 times so

that distributions of parameter estimates can be generated.

parameter estimation

In the simulations, | compare the weighted least squares and the maximum likelihood
estimation methods. The two methods appear to be very similar in terms of the mean
squared errorsMSE) of the parameter estimates (Figure 4.9). In both cases, there is an
inverse relationship betwe@SE and sample size, withlSEincreasing substantially at
sample sizes below 100. There does appear to be substantial differences in the bias of the
two parameter estimation methods. The weighted least squares method gives biased results
for estimates fop, while the maximum likelihood appears to be unbiased, even at low
sample sizes (Figure 4.10). Both methods yield biased estimakefiosmaller sample
sizes. It looks as though the maximum likelihood method is tending toward unbiased
estimates as is gets large, but even at a sample size of 500, the weighted least squares
estimates ofA are still substantially biased. Based on these simulations, the maximum
likelihood is a more efficient method of parameter estimation. It should be noted, though,
that these simulations were performed with particular parameter values. Additional

simulations are needed to show that the results are general.

4.5. Application to discrete time data

introduction

As a first example of the application of the travel time model to data, | will apply the
model to data of the travel time of fish through a single reservoir. The reservoir is the John
Day Pool, the reservoir between McNary and John Day Dams, and the fish observed here
are yearling chinook salmon. This data set has several desirable features. First, the fish are

traveling through a single relatively homogeneous reach — there are no intervening dams or
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Figure 4.9 Plots ofMSEversus sample size for the parameteandA for the weighted least
squares and maximum likelihood parameter estimation methods.
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Figure 4.10Plots of bias versus sample size for the paramptamiA for the weighted least
squares and maximum likelihood parameter estimation methods.
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major tributaries. Also, the study was repeated over four years, and in each year, releases
occurred over many days, providing migration characteristics in a variety of conditions.
Finally, the fish are active migrants collected from the river. Fish that are raised in
hatcheries and then released usually undergo a period of delay before initiating active
migration; this adds further complications to the travel time model. Essentially, this data set
is a test of whether the simple travel time model can form a basis on to which further

complexity can be added as needed.

data

The data consist of yearling chinook salmon collected at McNary Dam, freeze branded
with a unique brand (on a daily basis) and then released back into the river below the dam.
Approximately 1,000 fish were marked and released per day. Marked fish were sampled as
they passed John Day Dam, 122.9 km downstream from the release point. Data were
collected over five week periods in 1989, 1990, and 1991, in 1992, six weeks of data were
collected. Fish collected and released for 5 days each week (Monday through Friday) were
lumped together into weekly cohorts to achieve adequate sample sizes. Cohorts below 20
in sample size were excluded from the analysis. Week 1 of 1990 was excluded because a
fire at John Day Dam precluded data collection, and week 5 of 1990 was excluded because
the collection facilities were shut down before the groups of this cohort completely passed
the dam. A total of sixteen cohorts over the four years were analyzed (Table 4.1). The first
two years of the data set have been analyzed statistically by Stevenson and Olson (1991),

and they provide a fuller description of the experimental design.

methods

In this application, | apply the discrete time, two parameter, travel time model, equation
(4.8), to these data. Parameters are estimated numerically using maximum likelihood based

on the multinomial distribution and a downhill simplex fitting routine (Press, et al., 1988).
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Figure 4.11A map showing the mid and lower Columbia River release and recapture sites. For the
freeze branded chinook, fish were captured, branded, and released at McNary Dam and recaptured at
John Day Dam. For the PIT tagged fall chinook analyzed in the next chapter, fish were collected, tagged,
and released at the mid-Columbia release point and recaptured at McNary Dam.

Nonparametric 95 per cent confidence intervals are constructed using the bootstrap

methods described in chapter 3. Model performance is assessed using Pedrson's X

statistic.

results

Plots of the data with the best fit model show that the model captures the general

behavior of the observed travel time distributions (Figure 4.12). Parameter estimates and
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Table 4.1Descriptive information for the 16 cohorts used in the data analysis. The date of
release is for the first release group of the cohort. See text for the procedure used to calculate the
average flows for the cohorts.

cohort release information number ave. flow
# | year - week| date (Julian date) sampled (kefs)
1 1989 - 1 May 01  (121) 27 263.5
2 1989 - 2 May 08  (128) 57 283.2
3 1989 - 3 May 15  (135) 48 258.9
4 1989 - 4 May 22  (142) 32 228.3
5 1990 - 2 April 30 (120) 36 233.9
6 1990 - 3 May 07  (127) 32 231.3
7 1990 - 4 May 14  (134) 24 196.3
8 1991 -1 April 22  (112) 38 250.0
9 1991 -2 April 29  (119) 20 236.7
10 1991 - 3 May 06  (126) 24 249.4
11 1992 -1 April 20 (111) 85 178.3
12 1992 - 2 April 27 (118) 88 195.4
13 1992 - 3 May 04  (125) 88 206.4
14 1992 - 4 May 11  (132) 86 205.2
15 1992 -5 May 18  (139) 119 202.7
16 1992 - 6 May 25  (146) 80 195.0
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Figure 4.12Plots of the fitted arrival time model (solid line) versus the data (points) for the sixteen
cohorts. The model parameters and results of the goodness-of-fit tests are provided in Table 4.2
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confidence intervals are provided in Table 4.2. Estimatesasfge from 11.4 to 32.2 km/

day, with 95 per cent confidence intervals ranging in width from 4.6 to 17.5 km/day.
Estimates ot ranged from 15.7 to 39.4 km/d‘éﬁ/with 95 per cent confidence intervals

ranging in width from 7.3 to 40.6 km/d]a@. In three cases the model is rejected atithe

0.05 level; for four additional cases, the model is rejected at th€.10 level.

discussion

The two parameter arrival time model derived from an advection-diffusion equation
works well in describing the downstream movement of actively migrating juvenile salmon
under the range of conditions observed in John Day reservoir. In the three out of sixteen
cases that the model is rejected (atathe0.05 level) the data are highly variable, and it is

unlikely that any two parameter model would fit.

The difficulty in implementing the model will arise in choosing appropriate parameter
values. Table 4.2 reveals variability among cohorts in estimateswodo. In the next
chapter I will attempt to relate the variability in parameter estimates to observable factors
such as river flow and temperature. Variability also arises from sampling error as
demonstrated by the broad confidence intervals obtained in the bootstrap analysis. More

studies with larger sample sizes would decrease this uncertainty.

4.6. Application to continuous data

In this section, | apply the basic travel time model (equation (4.7)) to continuous data.
| analyze data representing several groups (steelhead, spring and fall chinook) from a
variety of release points over several years. All the fish in this analysis were collected in a

river, marked with a PIT tag, released and then recaptured at a downstream collection site.
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Table 4.2Parameter estimates, confidence intervals and goodness-of-fit results for the sixteen cohorts.
The units forr are km/day, and the units farare km/da¥/?. For the goodness-of-fit test results, df refers to
the degrees of freedom. The model is rejected for gmallues, e.gp > a, with a often chosen as 0.05.

cohort parameter estimation goodness-of-fit

# |year-week F (95%C.l)| 6 (95%C.L)| x° | df p

1 1989 - 1 25.5 (18.3,28.8) 15.7 (10.9,26.8) 1.87 3 0.600
2 1989 - 2 28.1 (24.2,32.8) 35.1 (26.6,42.7) 4.97 6 0.548
3 1989 - 3 32.2 (26.6,37.5) 25.1 (18.7,31.3) 6.20 3 0.112
4 1989 - 4 26.3 (20.6,38.1) 39.4 (11.7,52.3) 8.63 4 0.071
5 1990 - 2 23.2 (16.8, 26.5) 19.7 (15.4,28.7) 5.47 6 0.486
6 1990 - 3 19.3 (15.6,29.5) 28.4 (13.9,32.4) 4.99 5 0.417
7 1990 - 4 20.2 (16.5,25.9) 27.5 (20.4,32.1) 9.p2 4 0.056
8 1991 -1 17.8 (14.6,23.5) 29.3 (21.6,34.2) 6.54 7 0.479
9 1991 - 2 21.0 (17.4,26.2) 25.4 (18.6,30.2) 3.59 4 0.464
10 1991 - 3 25.9 (22.3,30.4) 22.1 (16.9,26.0) 5.p1 3 0.171
11 1992 -1 11.4  (9.8,13.8) 20.7 (15.3,23.9) 14.16 15 0.514
12 1992 - 2 16.2 (11.0, 22.4) 28.0 (20.2,33.7) 51{21 16 0.000
13 1992 - 3 12.5 (10.7,15.3) 34.2 (30.3,37.6) 25,28 17 0.089
14 1992 - 4 17.6 (13.0, 20.3) 22.1 (18.2,28.1) 3152 12 0.002
15 1992 -5 24.9 (20.8,27.5) 18.8 (14.2,25.2) 4261 10 0.000
16 1992 - 6 22.3 (18.8,30.9) 39.6 (28.7,45.4) 1661 10 0.084
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data

To avoid confusion, | have adopted the following terminology in referring to the PIT tag

data.

* individual - each individual fish has a unique code, and thus individual travel
times can be distinguished.

* release group- a group of individuals that was tagged and released from the
same point at the same time; all the fish in a release group have the same
release identification code in the PIT tag database.

* cohort— one to several release groups lumped together to achieve an adequate
sample size; cohorts are the unit of analysis for the travel time studies.

* cohort set- a group of cohorts that are composed of fish with similar
characteristics and released from the same point over several years.

Based on the results of the simulations and the plots of the confidence intervals and bias,
| use a target cohort sample size of 50 fish (that is, the number of fish observed at the
downstream collection site), with a minimum sample size of 40. Release groups are lumped
together (if necessary) from up to 3 consecutive days of release to achieve these sample
sizes. Once a cohort reaches 50 fish, | do not add any further release groups to it. If a
minimum sample size of 40 could not be obtained from release groups over a three day

period, these groups are excluded from the analysis.

| use several criteria to decide which cohort sets to include in the analysis in this and
later chapters in addition to the sample size criteria mentioned above. The ideal cohort set

has:

* releases over several years and a number of cohorts per year;
» stocks of known origin (hatchery versus wild) and preferably wild;

* migration routes along relative homogeneous river reaches with no intervening
dams.
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All of the cohort sets did not meet all of these, and | included sets that expanded the scope

of the study.

In Appendix 1, | provide the release group identification numbers for all the PIT tag
data used in this and subsequent chapters. This appendix also shows how | lumped release

groups to form cohorts.

| chose 3 cohort sets to analyze in this section. The first two are fish that were captured,
tagged, and released at the Snake River trap and recaptured at Lower Granite Dam, also on

the Snake river (Figure 4.13). The reach length is 52 kilometers. One of the cohort sets

/

Lower Granite Dam

¢ (recapture point)

Clearwater River

Little Goose Dam

Snake River Snake Trap

(release point)

IDAHO

WASHINGTON

Salmon River

OREGON

Figure 4.13Map showing the release and recapture sites for the Snake River chinook and steelhead.
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consists of chinook salmon of unknown origin (hatchery versus wild), often referred to as
“run-of-the-river” fish. Although the run type (spring or yearling versus fall or subyearling)

of these fish is not determined, it is likely that the vast majority of these fish are spring
chinooks based on the distribution of lengths (most fish longer than 110 millimeters) and
the timing of migration (early spring). Also, | excluded groups released after May 15
because after this date average fish length and migration rate began declining, indicating a
possible presence of fall chinook. | refer to these fish as “spring” chinook, but acknowledge
that a small percentage of the fish may actually be fall chinook. This is consistent with other
treatments of this group of fish (e.g., Fish Passage Center, 1991). Groups were released
from early March through mid May. 101 cohorts were analyzed over the 5 year period
1989-1993. Beginning in 1992, hatchery stocks were distinguished at release time, and wild
stocks were distinguished in 1992 and 1993. | lump these groups together, though, to be

consistent with earlier years.

The other Snake River cohort set is composed of wild steelhead. 101 cohorts of
steelhead were analyzed over the same 5 year period. Groups were released from early

April through early June.

The third set of fish included in this analysis are wild, fall chinook captured, tagged, and
released in the Hanford reach of the mid-Columbia River (see Figure 4.11). Releases
occurred during the three years 1991-1993 in early to mid June. They were recaptured at

McNary Dam, which is 121 kilometers downstream.

data analysis
The basic travel time model (equation (4.7)) is applied to each cohort. Maximum
likelihood estimates (equations (4.11) and (4.12) are calculatedholo, with 95 percent

confidence intervals (based on equations (4.17) and (4.19)) constructed around these
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estimates. Alsox? goodness-of-fit test for continuous data (as described in Chapter 3) is
performed for each cohort. The computer code used to perform these algorithms is provided

in appendix 3.

results

Table 4.4 - Table 4.6 (in the appendix of this chapter) contains parameter estimates,
confidence intervals, and the results of the goodness-of-fit tests for each cohort. Since there
is a large amount of information in these tables, | have condensed the results into summary

statistics and plots.

It is clear from Table 4.4 - Table 4.6 that there is a great deal of variability in the
parameter estimates within cohort sets. In particular, it appearsitica¢ases through the
season in some cases. | will analyze this variability in greater detail in the following
chapters. In this chapter, | will present the means and standard errors of the cohorts for each

of the cohort sets for qualitative comparisons (Table 4.3).

From Table 4.3 it can be seen that the Snake River steelhead migrate at a substantially
greater rate (approximately twice as fast) than the Snake River chinook, while the Snake
River chinook migrate at a greater rate than the mid-Columbia fall chinook. The
comparison between the Snake River steelhead and chinook is particularly relevant because
they migrated in the same river reach during the same time period. The estincaies®f
slightly higher for the steelhead than the spring chinook and fall chinook, which were

similar to each other.

One way to graphically demonstrate the results of a number of goodness-of-fit tests is
to plot the cumulative distribution of thevalues. If the model and data are in perfect
accordance, thp-values will be distributed uniformly on (0,1) and should roughly fall on

a straight line through the origin and the point (1.0, 1.0). Departures between the model and



76

Table 4.3Summary statistics of the parameter estimates averaged on a
yearly basis for each of the three cohort sets.

number mean value (standard error)
year of
cohorts r o

Snake River spring chinook

1989 38 579 (1.41) 8.44 (2.00)
1990 13 6.71 (2.78) 8.86 (3.64)
1991 17 485 (1.82) 6.38 (2.36)
1992 6 450 (2.87) 7.04 (4.50)
1993 27 8.23 (2.37) 7.81 (2.22)

Snake River steelhead

1989 16 18.11 (6.68) 1557 (5.73)
1990 27 12.97 (3.66) 10.66 (3.01)
1991 20 14.67 (4.84) 11.02  (3.62)
1992 18 10.86 (3.78) 1036 (3.62)
1993 20 16.80 (5.50) 13.66 (4.48)

mid Columbia fall chinook

1991 2 3.33  (4.71) 9.62 (13.65)
1992 5 358 (2.53) 6.93 (4.91)
1993 6 3.79  (2.40) 7.50 (4.76)

the data can be qualitatively assessed by inspecting this plot.

Figure 4.14 is a plot of the goodness-of-fit test results for the Snake River chinook.
While none of the years fall on the 45 degree line, some of the years have quite favorable

results. The cohorts from 1989 perform the best overall, with cohorts from 1990, 1991, and
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Figure 4.14Cumulative plots of the goodness-ofgivalues for the Snake River chinook.

1993 also having the vast majority pfvalues above 0.01. The cohorts from 1992
performed poorly relative to the others. 1992 was an extremely low flow year, and this may

have affected the behavior of the fish.

The results of the goodness-of-fit tests for the Snake River steelhead (Figure 4.15) are
not as favorable as with the chinook. In all years, at least 50 percent of the cohopts have
values less than 0.01.The results from the mid Columbia fall chinook are also not favorable,
with 8 out of 13 cohorts havingrvalues less than 0.001. This indicates that the model is

not fully capturing the behavior of these two groups of fish.

Figure 4.16 contains plots of cumulative distribution functions from the fitted models
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Figure 4.15Cumulative plots of the goodness-ofgitvalues for the Snake River steelhead.

for the Snake River chinook. The data are included in these plots. These example plots are
from cohorts with a variety gi-values to demonstrate the range of model performance. It

is clear from these plots that the model does well in describing the data. Even in the case
wherep = 0.001, there is not a wide departure between the model and the data. Figure 4.17
and Figure 4.18 contain similar plots for the steelhead and fall chinook. In these plots,
cohorts withp-values below 0.001 were chosen to examine why the model failed. In the
case of the steelhead, approximately 75 percent of the fish arrived during a very short
period, with the remaining fish trickling in over a more extended period. The model could
not capture this behavior. In the case of the fall chinook, it appears that most of the fish
delayed migration (or migrated extremely slowly) for over 20 days and then started arriving

at the dam. Again, the model could not capture this behavior.
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Figure 4.16Plots of the cumulative travel times for the Snake River chinook. The solid line is the
best fit model, and the points are the data.pFhalue is from the goodness-of-fit test.
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Figure 4.18Plots of the cumulative travel times for the mid-Columbia fall chinook. The solid line
is the best fit model, and the points are the datapfadue is from the goodness-of-fit test.



81
discussion

The two parameter, continuous time, travel time model is effective at describing the
arrival time distributions of the Snake River spring chinook. For the vast majority of
cohorts, the model would not be rejected based on the goodness-of-fit tests. Also, even
when the model has lop+values from the goodness-of-fit test, the plots show that there
may still be good correspondence between the model and data. As with the lower Columbia
chinook analyzed in the previous section, the cohorts from 1992 did not perform as well as

those from the other years, which may be due to the extremely low flows that year.

The model does not work as well for the fall chinook and steelhead. The model is
probably too simple for these groups; additional components are needed to capture the

more complex behavior of these fish.

Besides positive goodness-of-fit results (at least for the spring chinook), the model has
other desirable features. It is easy to apply to data, with parameter estimates and confidence
intervals easily computed. The two parameters are intuitive and are biologically
meaningful:r is the average downstream migration rate, @nsl the rate of population
spreading. Also, since both the parameters are rates, they can be compared among cohorts

even when the river reaches are different lengths.

4.7. Appendices

appendix 4.a

The method of images is an intuitively appealing approach to boundary crossing
problems. It involves the placement of a source term on one side of a boundary and a sink
term on the other side (Daniels, 1982). The sink term has the effect of drawing off density
from the source term as it reaches the boundary. The approach produces some nice

generalities about boundary crossing problems.
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With natural boundary conditions, it was shown previously in this chapter that the

solution to the advection-diffusion equation with constant coefficients,

of _ _raf 026f i
ot 0X 26X2’

fF(x 1) = pg_(x_ ”)2 (4.23)

2Tr02t o2t

with initial conditions f(x, 0) = &(x) . An absorbing boundaryxat L can be achieved

by placing a sink term with weightatx = 2L (Daniels, 1982)i(x, t) can then be expressed

as
0 _(x— )T
p(% ) = ——— [exp=E 2”) _k rexppX=2L =" (4.24)
IZT[O'ZtD 20t U 20’t DD

Sincef(x, ) vanishes ax = L, k can be solved for by settirfi@-, t) = O in equation (4.24).

K = 2Lr/ a2 is obtained by completing the square in the second term.

appendix 4.b

In this appendix, | will discuss a method involving Laplace transforms for determining
first passage distributions (Riccardia, 1977). | will develop the general approach and then
show it can be used in the case of the Wiener drift process with a simple boundary to
produce equation (4.7). | have based the derivation on several references: Darling and

Siegert (1953), Prabhu (1965), Riccardia (1977), and Chhikara and Folks (1989).

This method takes advantage of the following theorem (due to Siegert (1951)). First, let
X(t) be a homogeneous Markov process with continuous sample paths. Define

f(X t| x5 ty) as the conditional probability density function fi(t) = x given that

X(ty) = Xy . Also, defineg(t, L|ty, X;) as the probability density function for the fime
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whenXfirst reaches the state L > X5. The random variabl€ can be expressed as:
T = inf{t]X(t)=L} . (4.25)

Also, letf” denote the Laplace transformfofn other words,

fL(X| Xg A) = J'ge—“f(x, t| X, to)dt. (4.26)
Similarly, Ietg* be the Laplace transform of
The following theorem Siegert (1951) is useful in determigifrgm f andL.
Theorem 4.1

If Xg <L <X, then

f A
gHL|Xp A) = %?{%} :

(4.27)
proof:

The proof follows by considering paths that liexatL at timet. Paths that are beyond
L at timet must have first reachdd at some times with s < t. Thus, we can write the

conditional probability distribution fax in terms of possible paths fraxg to x:
f (X, t] X to) = ﬁ)g(t, L|ty, %o) f (X, t|L, t—s)ds. (4.28)
Applying the convolution theorem for Laplace transforms to equation (4.28) yields:

gL %o, A)

oL (4.29)

fLAX| %, A) =
Rearranging terms results in equation (4.27).

This theorem is useful in cases where the Laplace transform is knoiwmterLaplace
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transform forg can then be determined from equation (4.27). If the inverse Laplace

transform is known fog’, theng can be obtained. In many cases, this is not practical. In
some cases, such as the Wiener process and Weiner process with drift, the pertinent Laplace
transforms and inverse Laplace transforms are known, and equation (4.27) can be used to

determine the first passage distributions.

In the case of the Wiener Process with drift,

1 (X=X—11)%
J‘gmexpg = Mt (4.30)

fL(X| X, ) =

After combining the exponents, completing the square, and rearranging terms, we end up

with:

il A) = X_lxoeXryE‘;Z%m_r)g

. (4.31)
X— X (X =Xy +—T1)2
t expt 3t
0
Ejm /2n02t3 o2t
Integrating (4.31) by parts yields:

1 — X 0
fLX| Xy A) = ex (Jr2=202\ =1)=. (4.32)

| %o Jr2— 202\ pgcz 0

SubstitutingL for Xy in equation (4.32) and plugging this into equation (4.27) yields:

O_L
o2

gl(L|xg A) = expg< (A/r2—202)\—r)5. (4.33)
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Making use of the fact that~1(exp(—a/ p) = _8_(-312g-a%/4t (Haberman, 1987), we

21

arrive at:

_ 2
o) = —— pE“(L o, (4.34)

202t

An alternative approach for determining the Laplace transform of the arrival time
distribution is as follows. This approach begins by considering equation (4.5), the
probability density foiX(t) = x given that the process hasn’t reached the barrier byttime

This can be written ap(x, t| %, ty) for<L, t<T (recall from above that is defined as

the time of absorption at the boundary). Also define

X

P(x t| %, tg) = j P(Y. t X% to)dy, (4.35)

and note thaP(L, t| X, t;) =prob(=t P satisfies the backward Chapman-Kolmogorov

equation (Cox and Miller, 1965); in other woré&ssatisfies

oP _ 0P 026 P

ot raxo 2 X2y’ (4.36)
Also, P can be related to the arrival time distribution by the relation
o]
a(t|L, xp) = —a—tP(L, t] Xo to) - (4.37)

Plugging equation (4.37) into equation (4.36) and taking the Laplace transform of both

sides yields

d 02 d°
0= r—q0 0
AQ rd + = 2dxo | (4.38)
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This is a second order linear ordinary differential equation and can be solved directly. The

general form of the solution is

g0 = A< + B, (4.39)

o,anda, are the roots of the characteristic equaéoﬁ +ra = A . Thus

—r + 412+ 2\0?

02

o, d, =

anda is positive (and real) ard, is negative. The particular solution can be obtained from

the following information. Firsty" is bounded fok > 0:

gl(t|A) = Jge—Mg(t)dtngg(t)dts 1. (4.40)
Thus the coefficienB = 0, or else the second term of the general solution would become

unbounded ag, - — . The coefficiehtan be determined by noting that wherr L,

absorption is immediate, argl{t|A\) = 1 . Thisyiehlss et , and

- /r2 2
ol = expg@—L) r+.rc+2\o E (4.41)

02

This is the same as equation (4.33) and is inverted in the same manneig{t) give

appendix 4.c

In computing equation (4.8) an exponential overflow problem can be encountered. This
equation involves multiplying an exponential that is large (sometimes larger than the
machine can handle) by a standard normal probability that is very small. Dennis et al.

(1991) present a method for combining these two terms in a numerical approximation for
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equation (4.8). Since | use this approximation extensively in computations, | will present

the details.

The cumulative distribution function for the inverse Gaussian is

. —rtQ Lrg.L-rt
G(tr o,L) = 1_[¢£L_ _ex 5 , (4.42)
Dcn/i O o2 U0 ot

where® is the cdf of the standard normal distribution. Problems may arise in evaluating
the above equation because the second term involves multiplying a large number, exp(e),
by a very small numbep(s). For certain combinations of o, L andt either of these
numbers may be beyond the precision of the computer used. Dennis, et al. (1991) present
a method that circumvents this problem by combining the two components of the second

term. The following has been modified from their approach.

First, making use of the relatio®(x) = 1-®(-x) , rewrite equation (4.42) as

G(t) = dJ(y)+expE2—0|:2£BJJ(—z) , (4.43)
with
, o reL
oAt
;= re+L
ot

Now denote the pdf of the standard normal distributiog disis easy to show that

Q) = exd () | (4.44)

and thus
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o(y) = exp%%%p(z) . (4.45)

It follows that
expEz-c—yL?rBD(—z) = expE%‘z[Bl -®(2)]

- oy)
= ZX[1-P(2)] . 4.46
o[t~ (@] (4.46)
This can be evaluated using the following approximation®f¢hkbramowitz and Stegun,

1965). Ifx < 4,

®(x) = 1-@(x)[dy 0y + 0,02 + ... +ds0S] (4.47)
where g, = 1/(14dg), do = 0.2316419,d; = 0.319381530d, = -0.356563782¢; =

1.781477937d,=-1.821255978, andy = 1.330274429. For > 4

+ (—l)sl [(BO.. [(28— 1)
h x2S

cb(x):l-@[l_xiza } §=1, .. 7.(448)

Therefore, foz < 4, using equations (4.46) and (4.47),

Lr
eXPE%BD(-Z) =@(y)[dyq, +d,aZ + ... +d503] . (4.49)

And for z= 4, using equations (4.46) and (4.48),

exp%‘z[%b(—z) = @[1—2—12 +.. 4+ (-1)"1 8 ELZS {2s— 1)} . (4.50)

The code to evaluatg(t) using the above procedure is contained in Appendix 3.
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appendix 4.d

Several of the simulations | perform require the generation of inverse Gaussian random
variates. A standard procedure for generating random varigtesn a probability density
function, f(x), is to use the inverse of the cumulative distribution functie(). The

procedure involves generating a uniform random variate on the range (0,1) and using the

transformationx = F~1(x) to generate the random variate. To perform this a closed form

solution of F—1 is required, but this is not known for the inverse Gaussian distribution.
Another approach utilizes a known relationskipg= g(X) , with the random vavrjate,

coming from an easily generated distribution. This procedure becomes a bit more

complicated when there is more than one pgofor a given observationg, and it must be

determined how to chose one of the roots.

Michael, et al. (1976) present a procedure for generating inverse Gaussian random
variates using a transformation that yields two roots. One of the roots is selected with an

assigned probability. The inverse Gaussian can be written as

N (X — 1) 2
f(X;H,A) = /2)\ 3ex;{ )\(Z)I(JZX“):| : X>0,u>0,A>0. (4.51)
TIX

The parameten = L/r ,and= L2/02 . With the transformation

V= g(X) = 7%-;;&)—2 , (4.52)

V is distributed ag? with one degree of freedom. TiRé variatesy, are easily generated

as squares of standard normal random variates. For a particular obsevgagguation

(4.52) has two roots:
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M2,
X, = u+—2—)\——% 4PNV, — H2V3
X, = U2/ Xy. (4.53)

Michael, et al. (1976) show that the rogtshould be chosen with probability

P1(Vo) = E_ (4.54)

Thus a general procedure for generating inverse Gaussian random variates is as follows.

First, generate a random variate from a standard normal distribution and square it to

generate an observation froxﬁ(l) Vo, Next, use equation (4.53) to calculate the rgpts
andx,. Finally, perform a Bernoulli trial with equation (4.54) to select the appropriate root.

The computer code to perform this procedure is provided in Appendix 3.

appendix 4.e
The results of the application of the two parameter travel time model (equation (4.7))

to continuous PIT tag data are contained in Table 4.4 through Table 4.6.
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Table 4.4 Results of the application of the two parameter, travel time model to Snake
River, spring chinook PIT tag data. The cohort number corresponds to the numbers in
Appendix 1. The methods for estimating parameters, constructing confidence intervals,
and conducting goodness-of-fit tests are provided in chapter 4.6.

specieschinook  run type unknown rearing type unknown release siteSnaketrap
group | #of | release parameter est. (95% confidence int.) goodness-of-fit
# | fish | date r (km/day) o (km/day'/?) X2 | df P
1989

1 48 03/24/89 2.69 (2.33, 3.06 5.46 (4.60, 6.91) 13)63 14 0.478
2 61 03/27/89 294 (2.62, 3.26 5.22 (4.46, 6.4D) 1656 16 0.415
3 57 03/28/89 2.74 (2.40, 3.07 5.42 (4.62, 6.71) 1532 15 0.429
4 55 03/29/89 2.85 (2.56, 3.13 4.42 (3.76, 5.50) 2387 15 0.067
5 45 03/30/89 2.79 (2.39, 3.19 5.69 (4.76, 7.2f) 11p9 14 0.663
6 57 03/31/89 277 (2.33, 3.22 7.25 (6.18, 8.98) 22126 i 0.101
7 54 04/01/89 3.25 (2.81, 3.70 6.48 (5.50, 8.09) 2400 15 0.065
8 57 04/02/89 3.04 (259, 3.50 7.04 (6.00, 8.7 24116 15 0.062
9 47 04/03/89 2.95 (2.49, 3.41 6.57 (5.52, 8.3f) 3077 14 0.006
10 52 04/04/89 3.31 (2.89, 3.72 5.87 (4.96, 7.3p) 1031 15 0.400
11 78 04/05/89 3.36 (2.97, 3.76 6.80 5.91, 8.1p) 8[15 18 0.976
12 77 04/07/89 3.70 (3.34, 4.05 5.84 (5.07, 6.9B) 13{27 18 0.775
13 54 04/09/89 3.30 (2.88, 3.71 6.02 (5.11, 7.5D) 9.33 15 0.859
14 43 04/10/89 3.16 (2.58, 3.74 7.58 (6.32, 9.74) 1542 13 0.282
15 55 04/11/89 4.04 (3.49, 4.60 7.29 (6.19, 9.0p) 10{13 15 0.412
16 48 04/12/89 493 (4.31, 5.56 6.95 (5.85, 8.8]) 10{79 14 0.702
17 53 04/13/89 5.14 (4.44, 5.85 8.07 (6.84, 10.08) 19(34 15 0.199
18 66 04/14/89 5.81 (5.19, 6.43 7.50 (6.45, 9.1p) 22[48 17 0.167
19 51 04/15/89 5.09 (4.39, 5.80 7.94 (6.71, 9.97) 20{65 15 0.148
20 68 04/16/89 7.24 (6.33, 8.15 9.99 (8.61,12.12) 25(53 17 0.083
21 64 04/17/89 7.49 (6.52, 8.46 10.13 (8.70, 12.37) 2269 16 0.122
22 66 04/18/89 8.01 (6.90, 9.11 11.40 (9.81, 13.97) 3945 17 0.002
23 63 04/19/89 8.64 (7.41, 9.87 11.89 (10.20, 14.54) 15(71 16 0.473
24 59 04/20/89 8.97 (7.66, 10.27 11.94 (10.19, 4.71) 1861 16 0.289
25 62 04/21/89 9.16 (7.87, 10.45 12.01 (10.29, 14.71) 25,03 16 0.069
26 60 04/22/89 7.80 (6.86, 8.75 9.34 (7.98, 11.4p) 38{17 16 0.qo1
27 69 04/23/89 8.15 (7.34, 8.97 8.51 (7.34, 10.3D) 2172 17 0.196
28 61 04/24/89 6.51 (5.38, 7.64 12.40 (10.61, 15.22) 1718 16 0.374
29 70 04/25/89 6.84 (6.09, 7.60 8.68 (7.49, 10.4p) 14/00 17 0.667
30 66 04/26/89 7.47 (6.74, 8.20 7.79 (6.70, 9.4)) 13[39 17 0.109
31 66 04/27/89 6.93 (6.13, 7.73 8.85 (7.62,10.77) 27(94 17 0.046
32 71 04/28/89 8.57 (7.71, 9.43 8.88 (7.68, 10.71) 17|17 17 0.443
33 41 04/30/89 10.26 (9.07, 11.44 8.34 (6.93, 10.91) 13(24 13 0.429
34 64 05/09/89 11.53 (9.74, 13.31 15.05 (12.92, 18.8) 35.16 16 0.004
35 62 05/10/89 7.75 (6.61, 8.89 11.54 (9.88, 14.14) 1706 16 0.381
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Table 4.4 (Continued) Results of the application of the two parameter, travel time
model to Snake River, spring chinook PIT tag data. The cohort number corresponds to
the numbers in Appendix 1. The methods for estimating parameters, constructing
confidence intervals, and conducting goodness-of-fit tests are provided in chapter 4.6.

specieschinook  run type unknown rearing type unknown release siteSnaketrap
group | #of | release parameter est. (95% confidence int.) goodness-of-fit
# | fish | date r (km/day) o (km/day'/?) X2 | df P
36 64 05/11/89 7.55 (6.46, 8.64 11.35 (9.74,d13.85) 16116 16 0.442
37 61 05/12/89 6.95 (5.98, 7.91 10.24 (8.76, 12.57) 8l46 16 0.934
38 84 05/13/89 6.29 (5.62, 6.96 8.83 (7.71, 10.47) 25(48 19 0.145
1990
1 59 04/09/90 530 (4.67, 5.94 7.55 (6.44, 9.3D) 27163 16 0.435
2 60 04/17/90 8.50 (7.70, 9.30 7.61 (6.50, 9.3p) 20{43 6 0.701
3 52 04/17/90 8.13 (7.12, 9.14 9.11 (7.71, 11.4D) 43]54 15 0.400
4 54 04/19/90 8.85 (7.92, 9.77 8.14 (6.91, 10.14) 17[33 15 0.299
5 59 04/20/90 6.34 (5.28, 7.40 11.55 (9.86, 14.244) 23|76 16 0.095
6 59 04/21/90 6.27 (5.38, 7.17 9.83 (8.39, 12.1R) 3214 16 0.q10
7 66 04/22/90 6.21 (5.31, 7.11 10.51 (9.04, 12.79) 21(27 17 0.714
8 62 04/23/90 555 (4.74, 6.37 9.72 (8.33,11.911) 26)87 16 0.043
9 70 04/24/90 5.16 (4.42, 5.89 9.78 (8.44, 11.8]1) 1514 17 0.585
10 80 04/25/90 454 (3.95, 5.13 8.88 (7.74,10.50) 2343 18 0.175
11 52 04/27/90 6.29 (5.70, 6.88 6.03 (5.10, 7.5p) 823 i3 0.914
12 41 04/30/90 5.75 (5.00, 6.50 7.06 (5.87, 9.14) 10J90 13 0.419
13 54 05/07/90 10.34 (9.18, 11.51 9.47 (8.04, 11.41) 17,33 15 0.299
1991
1 55 04/08/91 2.94 (263, 3.25 4.83 (4.10, 6.01) 24J53 15 0.057
2 42 04/09/91 3.28 (2.95, 3.61 411 (3.42, 5.3p) 18J19 n3 0.150
3 63 04/10/91 3.38 (3.07, 3.69 472 (4.05, 5.7]) 4889 6 0.doo
4 84 04/12/91 3.59 (3.31, 3.87 4.82 (4.21, 5.7]) 27{05 9 0.104
5 69 04/15/91 3.05 (2.74, 3.36 5.33 (4.60, 6.4) 20{57 n7 0.246
6 66 04/17/91 4.04 (3.61, 4.46 6.16 (5.30, 7.4P) 50[97 17 0.doo
7 47 04/18/91 439 (3.92, 4.86 5.44 (457, 6.9]) 24)08 4 0.035
8 55 04/19/91 3.62 (3.18, 4.06 6.08 (5.16, 7.56) 4416 15 0.000
9 65 04/22/91 489 (4.25, 5.53 8.34 (7.17,10.1p) 3000 16 0.018
10 62 04/23/91 511 (4.46, 5.76 8.06 (6.90, 9.8) 18J90 16 0.474
11 90 04/25/91 6.63 (5.70, 7.57 12.43 (10.90, 14.65) 17j07 19 0.585
12 63 04/26/91 6.29 (5.59, 6.98 7.91 (6.78, 9.6)) 2114 16 0.173
13 81 04/27/91 549 (5.01, 5.97 6.69 (5.83, 7.9f) 3126 18 0.027
14 53 04/29/91 5.62 (5.07, 6.17 6.00 (5.09, 7.5p) 2342 15 0.476
15 51 04/30/91 6.09 (5.28, 6.91 8.35 (7.05, 10.48) 19(24 15 0.203
16 63 05/10/91 9.92 (8.68, 11.15 11.14 (9.56, 13.43) 65,17 16 0.000
17 53 05/11/91 10.33 (9.52, 11.15 6.59 (5.59, 8.2B) 9|83 15 0.§430
1992
50 04/07/92 3.94 (3.49, 4.38 5.61 (4.74, 7.0)) 2548 14 0.030
57 04/08/92 3.73 (3.26, 4.20 6.53 (5.56, 8.0B) 29184 i 0.013
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Table 4.4 (Continued) Results of the application of the two parameter, travel time
model to Snake River, spring chinook PIT tag data. The cohort number corresponds to
the numbers in Appendix 1. The methods for estimating parameters, constructing
confidence intervals, and conducting goodness-of-fit tests are provided in chapter 4.6.

specieschinook  run type unknown rearing type unknown release siteSnaketrap
group | #of | release parameter est. (95% confidence int.) goodness-of-fit

# | fish | date r (km/day) o (km/day'/?) X2 | df P

3 84 04/14/92 3.95 (3.55, 4.34 6.57 (5.74, 7.79) 6371 19 0.000
4 52 04/20/92 459 (3.98, 5.20 7.35 (6.22, 9.2p) 20J69 i 0.147
5 45 04/23/92 5.45 (4.84, 6.06 6.21 (5.20, 7.98) 2489 14 0.036
6 46 05/01/92 536 (4.40, 6.32 9.96 (8.35, 12.6B) 3383 14 0.do2

1993

1 47 04/09/93 3.65 (3.13, 4.17 6.57 (5.52, 8.34) 20/64 4 0.111
2 71 04/10/93 3.76 (3.43, 4.09 5.14 (4.44, 6.20) 1773 17 0.406
3 60 04/11/93 3.57 (3.21, 3.92 5.22 (4.46, 6.4P 1157 16 0.773
4 59 04/12/93 3.48 (3.12, 3.84 5.31 (4.53, 6.54) 14J75 6 0.543
5 44 04/13/93 3.61 (3.27, 3.95 420 (3.51, 5.3B) 932 14 0.810
6 46 04/15/93 438 (3.95, 4.81 491 (4.12, 6.25) 10017 14 0.749
7 59 04/18/93 559 (5.00, 6.17 6.75 (5.77, 8.3p 195 16 0.256
8 43 04/21/93 5.48 (4.83, 6.12 6.40 (5.34, 8.2B) 1914 13 0.119
9 47 04/22/93 6.27 (552, 7.02 7.25 (6.09, 9.2[1) 14113 n4 0.440
10 82 04/23/93 7.14 (6.61, 7.68 6.52 (5.69, 7.7B) a7 i 0.956
11 47 04/25/93 7.47 (6.68, 8.27 7.10 (5.96, 9.0) 21)36 14 0.993
12 51 04/26/93 8.37 (7.59, 9.15 6.84 (5.78, 8.5P) 10{06 15 0.§16
13 64 04/27/93 8.09 (7.39, 8.79 7.07 (6.07, 8.6B) 15J56 16 0.484
14 43 04/28/93 8.29 (7.37, 9.21 7.42 (6.19, 9.51) 2212 13 0.054
15 58 04/29/93 9.71 (8.77,10.64 8.16 (6.96, 10.08) 35|03 16 0.004
16 60 04/30/93 10.34 (9.34, 11.35 8.67 (7.41, 10.66) 24187 16 0.072
17 53 05/01/93 10.83(10.08, 11.58 591 (5.01, 7.38) 9[83 15 0.830
18 57 05/02/93 11.41(10.48,12.33 7.41 (6.31, 9.17) 28|58 15 0.018
19 56 05/03/93 13.55 (12.45, 14.64 7.94 (6.76, 9.85) 12|79 15 0.619
20 98 05/04/93 12.97 (11.73, 14.20 12.31 (10.85, 14.40) 56.90 20 0.000
21 69 05/05/93 11.08 (9.96, 12.20 10.02 (8.64, 12.13) 2984 17 0.028
22 72 05/06/93 10.65 (9.57, 11.73 10.10 (8.74, 12.17) 2967 17 0.029
23 79 05/07/93 9.16 (8.16,10.16 10.54 (9.18, 12.58) 24,94 18 0.127
24 67 05/08/93 9.20 (8.33, 10.06 8.36 (7.20, 10.16) 22(85 17 0.154
25 96 05/09/93 9.67 (9.03, 10.30 7.24 (6.37, 8.48) 40(56 20 0.904
26 84 05/11/93 12.21 (11.01, 13.41 11.35 (9.91, 13.46) 3d.19 19 0.p49
27 74 05/13/93 12.40 (10.55, 14.24 16.21 (14.05, 19.47) 65.05 18 0.000
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Table 4.5 Results of the application of the two parameter, travel time model to mid-
Columbia, fall chinook, PIT tag data. The cohort number corresponds to the numbers
in Appendix 1. The methods for estimating the parameters, constructing confidence
intervals, and conducting goodness-of-fit tests are provided in chapter 4.6.

specieschinook  run type fall r earing type wild release siteMid Columbia
group | #of | release parameter est. (95% confidence int.) goodness-of-fit
# | fish | date r (km/day) o (km/day'/?) X2 | df P
1991
1 154 06/07/91 3.35 (3.07, 3.64 10.75 (9.70, 12.155) 147]82 25 0.000
2 97 06/07/91 3.30 (3.02, 3.59 8.49 (7.48, 9.9%) 120/43 20 0.9oo
1992
1 75 06/03/92 3.57 (3.26, 3.87 7.74 (6.72, 9.2P) 5352 18 0.Joo
2 73 06/03/92 3.53 (3.27, 3.79 6.53 (5.65, 7.8p) 56[04 17 0.doo
3 68 06/04/92 3.77 (3.47, 4.06 6.78 (5.85, 8.2p) 105(53 17 0.900
4 63 06/04/92 3.28 (3.02, 3.54 6.24 (5.35, 7.6B) 39/84 16 0.001
5 60 06/04/92 3.75 (3.41, 4.09 7.37 (6.30, 9.0p) 5400 6 0.doo
1993
1 61 06/07/93 4.26 (3.84, 4.67 8.57 (7.33, 10.5p) 35[25 16 0.do4
2 81 06/08/93 3.62 (3.30, 3.94 8.30 (7.24, 9.8p) 35/03 18 0.do7
3 115 06/08/93 3.78 (3.55, 4.01 7.12 (6.33, 8.211) 43)04 22 0.405
4 75 06/09/93 3.76 (3.49, 4.02 6.47 (5.61, 7.7p) 49)04 18 0.400
5 118 06/09/93 3.74 (3.47, 4.01 8.34 (7.42, 9.6D) 70)14 22 0.qo0
6 120 06/15/93 3.61 (3.41, 3.80 6.24 (5.56, 7.1J7) 40|83 22 0.9o9

Table 4.6 Results of the application of the two parameter, travel time model to Snake

River, steelhead PIT tag data. The cohort number corresponds to the numbers in
Appendix 1. The methods for estimating the parameters, constructing confidence
intervals, and conducting goodness-of-fit tests are provided in chapter 4.6.

speciessteelhead earing type wild release siteSnake Trap
0 . . oy

group | #of | release parameter est. (95% confidence int.) goodness-of-fit

# | fish | date r (km/day) o (km/day'/?) X2 | df P
1989

1 64 04/16/89 12.99 (11.10, 14.88 15.01 (12.88,18.32) 26|84 16 0.043
2 43 04/19/89 17.83 (15.06, 20.61 15.23(12.71, 19.59) 3105 13 0.003
3 66 04/20/89 16.93 (14.30, 19.56 18.62 (16.01, 22.64) 50,97 17 0.000
4 45 04/22/89 16.04 (12.23,19.85 22.59 (18.92, 28.86) 24,89 14 0.036
5 64 04/23/89 20.07 (18.06, 22.08 12.83 (11.01, 15.46) 23.28 16 0.106
6 63 04/25/89 18.77 (17.10, 20.45 10.98 (9.42, 13.43) 3863 16 0.001
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Table 4.6 (Continued) Results of the application of the two parameter, travel time
model to Snake River, steelhead PIT tag data. The cohort number corresponds to the
numbers in Appendix 1. The methods for estimating the parameters, constructing
confidence intervals, and conducting goodness-of-fit tests are provided in chapter 4.6.

speciessteelhead earing type wild release siteSnake Trap

group | #of | release parameter est. (95% confidence int.) goodness-of-fit

# | fish | date r (km/day) o (km/day'/?) X2 | df P
49 04/27/89 14.29 (12.29, 16.30 13.15(11.08, 16.40) 42094 14 0.000
48 04/30/89 14.53 (12.53, 16.53 12.88 (10.83, 16.30) 26.37 14 0.023
63 05/02/89 16.06 (13.91, 18.22 15.29 (13.11, 18.70) 3079 16 0.014
10 79 05/04/89 18.71(16.37, 21.05 17.30 (15.05, 20.65) 84.73 18 0.p00
11 79 05/06/89 21.78(19.71, 23.84] 14.15 (12.32, 16.89) 3791 18 0.p17
12 117 05/07/89 23.81(22.08, 25.54 13.91 (12.38, 16.03) 82.79 22 0.p00
13 80 05/09/89 26.36 (23.83, 28.88 15.86 (13.81, 18.90) 84.23 18 0.p00
14 87 05/10/89 20.51 (17.95, 23.06 19.00 (16.64, 22.47) 103.92 19 0.p00
15 62 05/11/89 18.06 (15.54, 20.57 16.68 (14.29, 20.43) 26.87 16 0.043
16 47 05/13/89 13.09 (10.76, 15.42 15.65 (13.14, 19.87) 34.00 14 0.po1

1990

1 61 04/17/90 13.68 (12.36, 15.00 9.95 (8.51,12.21) 34[00 16 0.005
2 51 04/19/90 13.53 (12.30, 14.77 8.53 (7.21,10.71) 24|88 15 0.052
3 69 04/21/90 14.90 (13.53, 16.26 10.54 (9.09, 12.16) 52,45 17 0.000
4 72 04/22/90 16.81 (15.41, 18.22 10.43 (9.02, 12.36) 28,56 17 0.039
5 52 04/23/90 14.77 (13.14, 16.41 10.90 (9.23, 13.65) 20,69 15 0.147
6 111 04/24/90 12.98 (12.24,13.72 7.88 (6.99, 9.12) 85[11 21 0.000
7 86 04/25/90 12.04 (11.30, 12.79 7.17 (6.27, 8.4B) 60[84 19 0.000
8 95 04/26/90 12.01 (11.20, 12.82 8.26 (7.27, 9.69) 51|96 20 0.900
9 66 04/28/90 11.07 (10.14, 12.00 8.14 (7.00, 9.9D) 53(39 17 0.900
10 55 04/29/90 11.04(10.17,11.91 6.91 (5.87, 8.59) 32|38 15 0.006
11 50 04/30/90 10.31 (9.28, 11.35 8.11 (6.84, 10.21) 29|56 14 0.009
12 76 05/01/90 10.79 (9.79, 11.78 9.49 (8.24,11.37) 5995 18 0.000
13 72 05/03/90 12.00 (10.87, 13.12 9.90 (8.56,11.92) 44 67 17 0.000
14 53 05/05/90 12.04 (10.54, 13.54] 11.22 (9.51, 14.02) 2d4.17 15 0.p21
15 80 05/06/90 12.91 (11.46, 14.35 12.95 (11.28, 15.43) 69.10 18 0.p00
16 146 05/07/90 11.90 (10.96, 12.85 12.04 (10.84, 13.65) 102.18 24 0.p00
17 87 05/08/90 12.94 (11.74, 14.14) 11.21 (9.81, 13.25) 44.79 19 0.000
18 55 05/09/90 13.26 (11.10, 15.42 15.69 (13.33, 19.50) 34.27 15 0.po1
19 52 05/10/90 10.03 (8.03, 12.03 16.18 (13.69, 20.46) 7331 15 0.000
20 68 05/12/90 8.97 (7.55,10.39 14.00 (12.07,16.97) 2671 17 0.063
21 50 05/14/90 8.14 (7.11, 9.16 9.04 (7.63,11.39) 19(36 14 0.152
22 44 05/15/90 8.85 (7.85, 9.85 7.90 (6.60,10.1B) 22|45 14 0.070
23 61 05/17/90 9.05 (8.16, 9.94 8.24 (7.05,10.1[1) 21{54 16 0.159
24 60 05/25/90 14.40 (13.26, 15.54 8.31 (7.11, 10.92) 19,80 16 0.229
25 57 05/28/90 20.04 (17.88, 22.20 13.01(11.09, 16.11) 33.63 15 0.p04
26 62 05/30/90 23.56 (20.36, 26.76 18.56 (15.90, 22.74) 5d.97 16 0.p00
27 58 06/01/90 18.16 (16.09, 20.24 13.24 (11.29, 16.35) 44.28 16 0.po1
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Table 4.6 (Continued) Results of the application of the two parameter, travel time
model to Snake River, steelhead PIT tag data. The cohort number corresponds to the
numbers in Appendix 1. The methods for estimating the parameters, constructing
confidence intervals, and conducting goodness-of-fit tests are provided in chapter 4.6.

speciessteelhead earing type wild release siteSnake Trap

group | #of | release parameter est. (95% confidence int.) goodness-of-fit
# | fish | date r (km/day) o (km/day'/?) X2 | df P

1991
1 57 04/26/91 8.74 (7.59, 9.90 10.51 (8.95, 13.0[1) 12(16 15 0.667
2 50 04/27/91 10.38 (9.46, 11.30 7.19 (6.07, 9.05) 17|32 14 0.240
3 49 04/28/91 9.10 (7.91, 10.28 9.76 (8.23,12.3B) 60/98 14 0.900
4 60 04/29/91 8.86 (7.70,10.01 10.75 (9.19, 13.42) 24|87 16 0.072
5 54 05/05/91 11.93(10.91, 12.96 7.79 (6.61, 9.70) 35(33 15 0.002
6 68 05/08/91 13.80 (12.56, 15.03 9.83 (8.47,11.92) 40124 17 0.001
7 359 05/10/91 12.54 (12.07, 13.01 9.18 (8.56, 9.92) 262,94 36 0.000
8 188 05/11/91 15.14 (13.98, 16.31] 14.92 (13.59, 16.65) 53.60 27 0.p02
9 113 05/12/91 13.97 (13.05, 14.88 9.47 (8.41,10.94) 136.98 21 0.000
10 126 05/12/91 14.94 (13.92, 15.96 10.76 (9.61, 12.33) 163.48 23 0.p00
11 59 05/13/91 14.64 (13.27, 16.02 9.85 (8.41,12.14) 37129 16 0.002
12 84 05/14/91 14.27 (13.22, 15.32 9.16 (8.00, 10.87) 66.86 19 0.000
13 56 05/15/91 13.13 (11.85, 14.41 9.45 (8.04,11.72) 23.07 15 0.083
14 85 05/17/91 17.52 (16.24, 18.80) 10.16 ( 8.88, 12.04) 69.00 19 0.p00
15 152 05/18/91 21.18 (19.80, 22.56 13.44 (12.12, 15.20) 123.95 25 0.p00
16 339 05/19/91 21.68 (20.65, 22.71] 14.93 (13.90, 16.17) 330.99 35 0.p00
17 51 05/20/91 19.80 (17.55, 22.04) 12.83(10.84, 16.10) 24.41 15 0.p19
18 58 05/23/91 17.14 (14.70, 19.57 16.01 (13.65, 19.77) 44.93 16 0.p01
19 55 05/25/91 18.47 (16.14, 20.80 14.33 (12.17, 17.81) 29.11 15 0.p16
20 56 05/26/91 16.24 (14.70, 17.77 10.17 ( 8.65, 12.61) 19.21 15 0.204
1992

1 61 04/18/92 8.33 (7.48, 9.18 8.22 (7.03, 10.09) 28J39 16 0.028
2 58 04/21/92 8.60 (7.65, 9.54 8.76 (7.47,10.8R) 40(93 16 0.qo1
3 64 04/22/92 8.94 (8.31, 9.57 6.07 (5.21, 7.4L) 26125 6 0.051
4 67 04/25/92 10.23 (9.53,10.92 6.41 (552, 7.79) 41(36 17 0.901
5 64 04/28/92 12.51(11.34, 13.68 9.49 (8.14,11.8) 27144 16 0.037
6 72 04/30/92 13.69 (11.72, 15.66 16.22 (14.04, 19.55) 56.33 17 0.000
7 180 05/01/92 12.59 (12.02, 13.17, 7.89 (7.17, 8.82) 201(00 27 0.000
8 154 05/02/92 14.51 (13.65, 15.38 10.24 (9.24, 11.57) 134.55 25 0.p00
9 69 05/03/92 12.99 (11.68, 14.31 10.85 (9.36, 13.14) 40.86 17 0.001
10 44 05/04/92 12.79 (11.46, 14.13 8.76 (7.32,11.23) 2245 14 0.070
11 44 05/05/92 15.02 (13.34, 16.70 10.18 ( 8.51, 13.05) 31.73 14 0.p04
12 54 05/06/92 13.59 (12.49, 14.68 7.79 (6.61, 9.71) 1933 15 0.199
13 40 05/07/92 12.34(10.79, 13.88 9.77 (8.10, 12.10) 16.80 13 0.209
14 61 05/08/92 6.85 (5.36, 8.34 15.92 (13.62, 19.54) 42]10 16 0.000
15 88 05/09/92 10.46 (9.31, 11.61] 12.02 (10.53, 14.20) 24.50 19 0.260
16 90 05/10/92 7.43 (6.62, 8.25 10.26 (9.00, 12.49) 11582 19 0.000
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Table 4.6 (Continued) Results of the application of the two parameter, travel time
model to Snake River, steelhead PIT tag data. The cohort number corresponds to the
numbers in Appendix 1. The methods for estimating the parameters, constructing
confidence intervals, and conducting goodness-of-fit tests are provided in chapter 4.6.

speciessteelhead earing type wild release siteSnake Trap

group | #of | release parameter est. (95% confidence int.) goodness-of-fit
# | fish | date r (km/day) o (km/day'/?) X2 | df P
17 60 05/11/92 7.15 (5.97, 834 12.26 (10.48, 15.08) 5843 16 0.000
18 42 05/12/92 7.39 (5.57, 9.22 15.34 (12.78, 19.80) 2581 13 0.018

1993

1 38 04/20/93 11.04( 9.40, 12.67) 10.63 (8.78, 13.94) 2684 13 0.013
2 51 04/24/93 10.97(9.17, 12.76) 13.77 (11.64, 17.29) 28.41 15 0.019
3 62 04/26/93 14.29 (12.96, 15.61] 9.85 (8.44,12.Q7) 63103 16 0.000
4 50 04/28/93 13.16 (11.58, 14.74 10.94 (9.23,13.97) 36.36 14 0.001
5 57 04/29/93 14.65 (13.07, 16.22 11.08 (9.44,13.91) 3111 15 0.009
6 50 04/30/93 14.52 (12.65, 16.39 12.32 (10.39, 15.50) 2d.04 14 0.129
7 87 05/01/93 16.58 (15.34, 17.82 10.27 (8.99, 12.15) 3514 19 0.013
8 85 05/02/93 15.45 (14.07, 16.83 11.66 (10.20, 13.82) 92.81 19 0.000
9 72 05/03/93 17.98 (15.93, 20.02 14.70 (12.71, 17.71) 44.33 17 0.000
10 217 |  05/04/93 19.14 (18.06, 20.23 13.37 (12.25, 14.80) 181.01 29 0.p00
11 97 05/05/93 18.46 (16.42, 20.50) 16.91 (14.89, 19.79) 13Q.39 20 0.p00
12 253 |  05/05/93 16.74 (15.52, 17.96 17.37 (16.01, 19.07) 222.33 31 0.p00
13 59 05/06/93 18.08 (15.17, 20.99 18.76 (16.02, 23.12) 69.49 16 0.p00
14 236 | 05/07/93 19.80 (18.55, 21.05 15.76 (14.49, 17.37) 182.93 30 0.p00
15 93 05/08/93 15.67 (13.96, 17.39 15.07 (13.24, 17.71) 47.23 20 0.p01
16 40 05/09/93 15.89 (13.70, 18.08| 12.22 (10.14, 15.90) 12.80 13 0.463
17 66 05/10/93 17.47 (15.91, 19.03 10.87 (9.35, 13.22) 34.61 17 0.007
18 85 05/11/93 19.19 (17.42, 20.96| 13.42 (11.73, 15.90) 34.76 19 0.p26
19 84 05/13/93 24.79 (22.02, 27.57 18.39 (16.07, 21.82) 60.05 19 0.p00
20 61 05/13/93 22.13(19.46, 24.81] 15.85 (13.57, 19.46) 5d.43 16 0.p00




5. Extensions of the travel time model

5.1. Introduction

In the previous chapter, | developed the basic two parameter travel time model
(equations (4.7) and (4.8)) and applied it to several data sets. In some cases it worked quite
well, in others not so well. In general, though, the model has desirable properties and can

form the basis of models that include more complex behavior.

In this chapter | expand the model to make it more realistic. In section 5.2 mortality is
no longer considered to be equal within the cohorts but is dependent upon the amount of
time spent in the river. In section 5.3 | incorporate migrational delay into the model. In the
last section of this chapter, section 5.e, | explore factors related to migration rate and
attempt to use these factors to predict model parameters. In addition, in chapter 6 | allow
for population heterogeneity and attempt to determine how various factors affect migratory

behavior.

| use some of the travel time data from the previous chapter to test for the
appropriateness of the added features. Since | do not want to use the same data in several
treatments (to avoid multiple comparisons), | have divided the Snake River trap chinook
and steelhead data into treatment groups. To randomly place the cohorts into 5 treatment
groups, | used the following procedure. | started by dividing the cohorts in a year into
blocks of 5 or 6 in a chronological sequence; the blocks with 6 members were randomly
assigned so that all the extra cohorts didn’t come at the end of the season. From each of
these blocks, 5 cohorts were randomly assigned to each of the treatment groups. This
ensured that cohorts were randomly assigned to the treatment groups and that the yearly

chronological sequence of cohorts was represented in each treatment group. For the mid-



99

Columbia fall chinook, | assigned cohorts into two treatment groups because of the smaller

number of cohorts.

5.2. Time dependent mortality

Previously, | assumed equal survival probabilities among the individuals in a cohort of
fish during the migration period. With this assumption, mortality will decrease the numbers
of the cohort but will not affect the shape of the arrival time distribution. If, on the other
hand, mortality is related to the amount of time spent in the river, then it will affect the shape

of the arrival time distribution, with slower fish being more susceptible to mortality.

If the reservoir mortality rate i8(t), then as shown in equation (2.24), the probability

of surviving through time is

- d
PIT>q = e o7 (5.1)
This mortality can be incorporated into the migration model as follows:

2
op_ _,0p,0%0p_
i rat + 5 3 a(t)p. (5.2)

Solutions of equation (5.2) have the form

a(t)dt

p(x 1) Eé—ﬁ (5.3)

Referring to this density ag,(x, t)  and using equation (4.5pfot t) , we have:

O _(x—rt)? _2A—rt)?
Bxp (x 2rt) _exp%ﬂgr_(x 2A2 )
P(% 1) = oot 20t Oo 20t [ . (5.4)

[e—ﬁ)a(s)ds
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Carrying out the same procedure as before, that is, integrating-from A with respect

to x and differentiating with respect towe end up with:

a(t) = () ot . (55)

— It Lrg.L—rt —ra(s)ds
+ =10 oy am te Jo
[ Oo i U o2 BDD ot (t)

whereg, (t) represents the loss from the reservoir (due to both dam passage and mortality)

and g(t) is equation (4.7), the basic arrival time distribution. The first term in the right side
of equation (5.5) is loss due to fish leaving the reservoir, and the second term is loss due to

mortality. This makes intuitive sense becagigis the pdf for dam passage in the absence

. - d - . .
of mortality, ande J;a(s) ° represents the probability of surviving through tinhe the

second part of equation (5.5), the term in brackets represents the fish remaining in the

- d
reservoir, anda(t)e ﬁ)a(s) ° s the survival probability density function. To obtain a
probability density functiong.,(t) , for the arrival time given time dependent in-river

mortality, the passage portion of equation (5.5) must be normalized:

g(t)e—ﬁ)a(s)ds

Jgg(r)e‘ﬁ°(s)dsdr |

In(t) = (5.6)

The simplest case is wheris constant, and Figure 5.1 contains plots of equation (5.6)
for various values of constamt Note that as increases, the mode of the distribution shifts
to the left, and the right tail becomes thinner.cAaf 0.02 corresponds roughly to 18 per
cent mortality after 10 days. At this and higher levels of mortality, including mortality has

little effect on the shape of the arrival time distribution.
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—— alpha=0.00
—-— alpha=0.02
alpha = 0.04
alpha = 0.06

a(t)
0.0 0.05 0.10 0.15 0.20

Figure 5.1Plots of equation (5.6) for various valuesioBothr ando are set at 10.Q; is set
at 100.

The model discrimination methods described in chapter 3 can determine the ability of
the model to detect travel time dependent mortality. In this case, the null model is the basic
arrival time distribution, equation (4.7). The alternative model is the arrival distribution
described by equation (5.6). | should emphasize that this will test for the ability of the
model to detect travel time dependent mortality in the river. Accepting the null hypothesis

does not necessarily mean the effect does not exist.

results

The results of the data analysis for the Snake River trap chinook and steelhead are
contained in Table 5.1 and Table 5.2. Each line in the table represents the results from a
single cohort. The cohorts are identified by year and cohort number, so these results can be

directly compared to those found in Table 4.4 and Table 4.6 (basic travel time model
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Table 5.1Results from the application of the travel time dependent mortality model to Snake
River chinook PIT tag data. Each row is a cohort. A negative value for BIC lends support to the
null model. See text for further details of the analysis.

*g # of parameter estimates likelihoods
S | fish
3 IS r o a ) N ratio BIC
1989
1 48 2.55 5.46 0.012 -166.84 -166.88 0.90 -3.87
54 2.96 6.48 0.022 -180.04 -180.04 0.00 -3.99
13 54 3.09 6.02 0.018 -176.02 -176.02 0.00 -3.99
18 66 5.70 7.49 0.01p -174.07 -174.97 -0.00 -4.19
24 59 8.85 11.94 0.00B  -139.46 -139.46 -0.00 -4.08
32 71 8.38 7.30 0.01p -159.62 -157.80 3.64 -0.62
37 61 6.70 10.25 0.01p -159.96 -159.96 -0.00 -4111
1990
1 59 5.10 7.55 0.019 -162.63 -162.63 -0.00 -4.08
9 70 4.93 9.78 0.012 -207.84 -207.84 0.00 -4.p5
12 41 5.64 7.06 0.018 -106.55}) -106.59 0.00 -3.71
1991
5 69 291 5.33 0.014  -225.63 -225.683 0.00 -4.23
8 55 3.49 6.08 0.012 -172.8% -172.85 0.00 -4.01
17 53 10.32 6.59 0.00B -91.08 -91.08 0.00 -3.97
1992
6 46 5.08 9.96 0.015 -133.54 -133.54 0.00 -3.83
1993
1 47 3.51 6.57 0.011 -149.9¢ -149.96 0.90 -3.85
8 43 5.42 6.40 0.00f -111.69 -111.69 0.00 -3.76
16 60 10.25 8.67 0.01B -116.58 -116.58 0.00 -409
17 53 11.11 4.93 0.03L -82.08 -81.05 2.07 -1.90
24 67 9.10 8.36 0.008 -139.95}) -139.65 0.68 -3.p3
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Table 5.2Results from the application of the travel time dependent mortality model to Snake
River steelhead PIT tag data. Each row is a cohort. A negative value for BIC lends support to the
null model. See text for further details of the analysis.

*g # of parameter estimates likelihoods
S | fish
3 | 1S r o a lg N ratio | BIC
1989
3 66 16.83 18.61 0.005p  -117.72 -117.42 -0.00 -4]19
63 17.75 12.71 0.0000 -108.89 -104.11 9.57 542
13 80 26.33 15.85 0.0034 -87.8D -87.49 0.00 -4138

1990

5 52 14.77 10.91 0.000 -85.12 -85.1 -0.00 -3/95

10 55 11.35 5.61 0.058 -91.19 -87.9 6.49 249

0 2
il 4
14 53 13.27 8.32 0.0187 -100.79 -91.91 17.Y5 13{78
3 8
0 7

21 50 7.64 9.05 0.048 -115.68 -115.6 -0.00 -391

25 57 20.04 13.01 0.000 -75.9f -75.9 0.p0 -4,04
1991

1 57 8.27 10.51 0.037p  -131.50 -131.50 -0.00 -404

9 113 13.87 9.47 0.014p -179.38 -179.38 0.00 -4]73

12 84 14.17 9.16 0.0167 -128.9p -128.96 0.0 -4143

18 58 17.14 16.01 0.0000 -97.98 -97.93 -0.00 -4/06
1992

3 64 8.73 6.08 0.0505 -118.79 -118.79 -0.00 -4.16

7 180 13.23 6.12 0.005

(=)

-278.24 -262.08 32.82 27(12

18 42 7.23 15.34 0.005

[=}

-112.78 -112.718 0.p0 -3{74

1993

5 57 14.65 11.08 0.000 -93.72 -93.72 0.00 -4.04

10 217 19.58 12.67 0.000¢ -305.5) -301.26 8.64 3|26

0
0
15 93 15.67 15.07 0.0000 -164.8p -164.82 -0.00 -4/53
19 84 24.75 18.39 0.0032

-108.48 -108.48 -0.p0 -4143




104

results) and release information can be found in Appendix I. These tables also contain
parameter estimates for the travel time model with mortality, likelihoods for the null and

alternative models, and the likelihood ratios and BIC values. The BIC value in these tables
is the difference between the BIC values for the alternative and null models. A negative
value lends support to the null model, and positive one lends support to the alternative

model.

Little support exists for including travel time dependent mortality in the model for the
Snake River chinook (Table 5.1). 16 out of the 19 cohorts had likelihood ratios less than
0.01, and for none of the cohorts would the null model be rejected based on a likelihood
ratio test or based on the BIC values. This is not to say that travel time dependent mortality
is not occurring for these groups, but this model cannot detect it with these data. Other types
of data are necessary to observe this effect. On a positive note, the fact that this type of
mortality seems to have little effect on the arrival time distribution makes modeling arrival

times less complex.

The results from the steelhead cohorts are a bit perplexing. As with the chinook, the
majority of cohorts (14 out of 19) had likelihood ratios less than 0.01. But the remaining 5
cohorts all had fairly large ratios, and for all these cohorts the null hypothesis would be
rejected based on a likelihood ratio test or BIC values. The estimates of the mortality term,
a, for these groups is quite variable, ranging from less than 0.0001 to 0.058. This leads me
to believe that these results are spurious — the added term allows for a better fit of the model

to the data but not in a biologically meaningful way.

5.3. Delay in migration

introduction

In the previous chapter, | assumed that fish migrate at a constant rate during the entire
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migration period. In some cases, however, fish may delay their migration. In this section, |
examine two types of delay — delay in front of a dam before passage and delay before the
fish initiate downstream migration. In both these cases, the delay may be substantial, and

incorporating a delay term in the travel time model may be worthwhile.

There is some evidence that fish delay their passage as they encounter a dam. Dams
produce turbulence and a significant amount of noise that may deter fish from passing. Also
dam passing often involves extreme changes in pressure, which the fish resist. First, |
examine the dam delay process by analyzing some chinook radio-tracking data at John Day
and Lower Granite Dams. | then incorporate the delay model into the basic travel time

model and apply this to PIT tag data.

Sometimes fish are tagged and released before they are ready to initiate migration. This
may be the case when hatchery fish are released before they are fully smolted or when wild
fish are collected in their rearing habitat, tagged, and then released back in the river. The
mid-Columbia fall chinook examined in the previous chapter may be an example of the
latter case. These fish were beach seined, and most of the fish were less than 75 mm in
length, probably too small to initiate migration. For these fish | incorporate a migratory

delay term into the travel time model.

formulation of the model

If the delay probability density function &t), andd(t) is independent of the arrival
distribution, then we can express the passage distribution incorporating delay as a

convolution integral (Mood, et al. 1974):

t
gp(t) = [d(t-T)g(r)dr . (5.7)
0

g(t) is the arrival distribution without delay (equation (4.7)) agp{t) is the arrival
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distribution with delay included. Note that it does not matter whether the delay occurs

before or after the migratory period; the general equation remains the same.

Although the waiting time process is likely to be complex, a reasonable simplification

is a waiting time process with instantaneous passage ({txtd his yields a delay pdf of

- d
det) = a()e St (5.8)
Assuming a constait equation (5.7) becomes

t
9p(t) = foae™ Ht=1g()dt , (5.9)
0

and the average delay isal/Figure 5.2 represents the components of equation (5.9)
graphically. The delay term (top plot) and reservoir travel time term (middle plot) are both
incorporated into the arrival time with delay equation (bottom plot). Assuming the basic
travel time distribution (equation (4.7)) fg(t), plots of equation (5.9) are presented in
Figure 5.3 for several values of constanAs average delay increases (i.eq @gcreases),

the mode of the distribution shifts to the right, and the curve flattens out.

application of the delay model tadio-tracking data

It is clear from Figure 5.3 that delay at a dam can produce substantial effects on fish
arrival distributions. With most arrival time data, where fish are sampled as they pass a dam,
separating river travel time from dam delay is difficult. Fortunately there is some data
available where dam delay can be observed directly. These data are from radio tag studies
where groups of fish are released upstream from a dam. The time when an individual first
reaches the forebay in front of the dam is recorded as well as when the fish passes through
the dam. The difference between these two times is dam delay. A distribution of these times

is obtained from a group of individuals released at the same time.
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Figure 5.2 A graphical representation of the arrival time distribution with a delay term
added. The top graph is exponential delay with con$tafithe middle graph is the two
parameter travel time model (equation (4.7)). The bottom graph represents equation (5.9),
the arrival time distribution with the delay term incorporated.
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Figure 5.3Plots of equation (5.9) for various valuesxoBothr ando are set at 10.Q; is set
at 100.

Applying delay models to independent data sets has several advantages. Since delay is
being observed directly, more accurate parameter estimates can be obtained. These
parameter estimates can then either be applied directly to the travel time model with delay
(equation (5.7)), or the parameter estimates can be compared to those obtained by applying
equation (5.7) to travel time data. Also, these data will allow for a more direct assessment

of model performance and for comparison among alternative models.

| will examine three alternative models for delay. The first is a simple model where
delay is determined by a constant passage rate. The second model introduces diel behavior
with separate passage rates for daytime and nighttime periods. The third model separates

the fish into two types: those who pass quickly and those who pass more slowly.

Two radio-tag studies have been performed on juvenile salmonids in the Columbia
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River system: one at John Day Dam in 1984 (Giorgi et al., 1985) and the other at Lower
Granite Dam in 1985 (Stuehrenberg et al., 1986). In these studies fish were fitted with
miniature radio-tags and released upstream from the dam. Several receivers were situated
at the dam and were able to detect when they first arrived at the front of the dam and when

they passed the dam. The difference between these two times is the delay.

In the John Day study, fish were released on 4 days. On the first three days (May 1, May
10, and May 14), 28 fish were released; half were released in the morning and half were
released in the afternoon. On the fourth release day, only 11 fish were released, and | did
not include these fish in the analysis. The fish were collected from the John Day Dam and
released 6.3 km. upstream from the dam. In the Lower Granite study, 4 groups of
approximately 100 fish were released 4.8 km. upstream from the dam. These fish were
collected at the bypass facilities of Lower Granite and McNary Dams. The first group was
not analyzed because of technical difficulties encountered at the dam. The last three groups

were released on April 17, April 24 and May 1.

Stuehrenberg et al., (1986) also performed behavioral test to determine the impact of
the tags on the fish. They determined that the radio-tags did not significantly affect either
swimming velocity or mortality but that the tags may affect the buoyancy of the fish.
Because of this problem, these data are not ideal. They are, however, the only data where
dam delay is directly observed. For this reason | have chosen to analyze these data to obtain
rough parameter estimates and some qualitative results. In addition, the methodology |

present will be applicable in the future if better data become available.

To analyze the data | use the following procedure. First | estimate the parameters using
maximum likelihood. If numerical solutions are required, | use the downhill simplex

method (Nelder and Mead, 1965; Press, et al., 1988). Also, log likelihoods are computed

for comparisons among models within a data set. In addition, | perfoXhgoodness-of-
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fit test, following the procedure for continuous data outlined in chapter 3.

The first model is the waiting time model with cons@nThe pdf for delay is

d(t) = ae™t, (5.10)

The maximum likelihood estimate faris

—_ ]

N
G=N/yt =1, (5.11)

i=1
whereN is the number of fish in the cohdgtis the waiting time of theh individual and

is the average waiting time for the group.

The second model includes a different passage rate for daytime and niginjtamel,

o, respectively. The delay pdf for passage during the day is

d(t) = agedta*ontal (5.12)

In this notationty is the time spent waiting during the day, apds time spent waiting

during the night period. The pdf for passage occurring during the night period is the same

as equation (5.12) but with, substituted fooyin front of the exponential term on the right

side. Note that since individual fish arrive at the dam at different times of the day, each fish

will have a different waiting time pdf. The mle’s of the two parametgreindagy are

determined numerically.

A third model is a double exponential model. The model essentially divides the
population into two groups: those that pass the dam quickly and those that pass more

slowly. The model is expressed as

d(t) = wt b e+ (1.0-wt) o e, (5.13)
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ot corresponds to the fast passage miés the slow passage rate, amchssigns a weight

to the two types of passage, willc wt<1.0 . Again, the mle’s of the parameters are

determined numerically, and a log likelihood is computed.

results

The parameter estimates, likelihoods and goodness-of-fit results for the Lower Granite

data are contained in table Table 5.3, and for the John Day data in Table 5.4. In these tables,

Table 5.3Delay model results from the Lower Granite data. For the simple ngel,
a. For the diel delay modelf1= O, andd»= 0 4. For the double exponential modell; =0+
andd»= 0 g Based on BIC values, the “best” model has the largest value.

model| a; | o, | wt lik | ratio | BIC; X2 p

Release data: April 17; n = 61

simple 1.13 -247.19 -498.50 105.64 <0.0p1

diel 1.42 0.91 -245.70 3.00 -499.41 106.26 <0.001

2 exp 66.87 0.85 0.26 -224.14 46.10 -460/62 32,13 0.010

Release date: April 24; n = 65

simple 3.48 -190.45 -385.08 12354 <0.001

diel 6.29 1.33 -173.83 33.24 -356.02 100.15 <0.001

2exp 113.70 2.07 0.41 -151.30 78.31 -315{12  14)22 0.58

Release date: May 1; n =70

simple 291 -217.68 -439.6L 27286 <0.001

diel 7.01 0.70 -181.43 72.51] -371.35 152.86 <0.001

2exp 70.65 1.2] 0.59 -148.06 139.24 -308|87  27J71 0.048

o,=a for the simple modebty; = a,, anda, = a4 for the diel-delay model, arwd;, = o and

0, = dg for the double-exponential model. The BIC values reported are those for the
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Table 5.4Delay model results from the John Day data. For the simple n@geld. For
the diel delay modellq = O, andd, = 0 4. For the double exponential model; = O and
O, = 0g Based on BIC values, the “best” model has the largest value.

model| a; | a, | wt | lik | ratio | BIC; X? p

Release data: May 1; n =19

simple 6.53 -43.74 -90.42 30.89 <0.0p1
diel 8.78 5.07 -43.03 1.42 -91.94 30.89 <0.001
2exp 71.67 2.59 0.68 -30.98 25.6p -70.69 4.87 0{89

Release date: May 10; n = 25

simple 13.38 -39.60 -82.42 25.44 0.008
diel 290.86| 4.18 -29.39 20.43 -65.21 24.40 0.007
2exp 101.59 7.87 045 -33.98 11.24 -77.62 12,96 0(23

Release date: May 14; n = 23

simple 13.51 -36.22 -75.58 27.30 0.004
diel 38.61| 4.04 -23.34 25.76 -52.95 19.39 0.036
2 exp 473.63  9.88 0.2y -29.25 13.98 -67.91 1713 0.072

individual models (not comparisons between models as in the last application). According

to this criterion, the most desirable model is the one with the largest BIC value.

Figures 5.4 and 5.5 contain plots of the fitted models versus the data. In these plots, the
percentiles of the data are plotted against the percentiles predicted by the model. A straight
line through the origin and the point (1.0, 1.0) would signify an exact correspondence
between the two. The columns of plots represent the three models, and the rows represent

the three data sets.

For the Lower Granite data, the average waiting time) (&/ approximately 20 hours

for the first group and approximately 8 hours for the second and third groups. In all three
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Figure 5.4 Plots of the percentiles of the data versus percentiles of the delay models for the Lower
Granite radio-tracking data. The solid line represents perfect correspondence between the model and
data.
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Figure 5.5Plots of the percentiles of the data versus percentiles of the delay models for the John
Day radio-tracking data. The solid line represents perfect correspondence between the model and
data.
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cases, the plots (Figure 5.4) show that the simple waiting time model cannot adequately
describe the data. The model under predicts early fish passage and overpredicts late fish

passage. The results of the goodness-of-fit testg-(allues below 0.001) confirm this.

Comparing the likelihood ratios and BIC values from second model to the first show
that this model is a marked improvement in the last two data sets, but the first model would
be selected for the first data set. In all three cases, the fish are more inclined to pass during
the nighttime hours, with a tenfold difference between nighttime and daytime passage rates
in the last data set. These results are consistent with diel behavior and a tendency toward
nighttime passage. However, the plots show that this model still does not adequately

describe the data and suffers from the same shortcomings as the first model.

The third model was partly motivated by the shortcomings of the first two. Based on
likelihood ratios and BIC values, this model is a substantial improvement over the first two.
Also, the plots show that this model does a reasonable job of describing the data. Among

the three data sets, the estimates;a@ndog are roughly of the same order of magnitude,
with oy fifty to one hundred times larger thag For example, in the first group of fish,

average waiting time for the fast fish is on the order of 20 minutes, while the slow group
waits for more than a day, on average, before passing the dam. There is a noticeable
difference among the three data sets in the estimates of the panatftterproportion of

fish in the fast group), which increases with release date, ranging from 0.257 in the earliest
release to 0.594 in the latest release. This is consistent with the fish being more eager to

migrate later in the season.

For the John Day data, the average waiting time is under 4 hours for the first group and
under 2 hours for the last two groups. As with the Lower Granite data, the simple model
cannot adequately describe the data based on the plots (Figure 5.5). Based on BIC values,

the diel delay model would be selected over the simple model in 2 out of 3 cases, but the
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plots indicate that this model is inadequate for the John Day data. The double exponential
model is a clear improvement over the simple model, based on the BIC values. Also, the

plots and the goodness-of-fit results indicate that this model represents the data well.

Some general conclusions from this analysis are the following. Fish passed John Day
more rapidly than they passed Lower Granite, and fish passed more rapidly later in the
season at both dams. The simple waiting time model could not adequately describe the data.
The diel passage model is an improvement but still did not adequately describe the data.

The double exponential model did an excellent job of describing the data.

application to tavel time data

In this section, | apply the travel time/delay model equation (5.9) to pit tag data. In this
application, | use treatment groups from the Snake River spring chinook and steelhead and
the mid-Columbia fall chinook. The cohorts are identified by year and cohort number, so
these results can be directly compared to those found in Table 4.4 through Table 4.6 (basic
travel time model results) and release information can be found in Appendix I. For each
cohort, | numerically calculate maximum likelihood estimates ofanda. | also report
the likelihoods for the travel time/delay model and the null model, which is the basic travel
time model (equation (4.7)). | also report the ratios of these likelihoods and the BIC values.
The BIC value reported is the difference between the value for time/delay model and the

null model. A negative value lends support to the null model.

For the spring chinook, all but one of the cohorts had slightly higher likelihoods for the
model with the delay component (Table 5.5). For none of the cohorts, though, would the
delay model be selected over the basic travel time model based on BIC criterion. Also, the
maximum likelihood estimates obi varied substantially ranging fronm =.202
(corresponding to an average waiting time of ~ 5 daya)+d5.81 (average waiting time

under 4 hours). On the other hand, many ofdlewere in the 3-4 range, which is
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Table 5.5 Results from the application of the travel time/delay model to Snake River, spring
chinook, PIT tag data. Each row is a cohort. A negative BIC value lends support to the null model. See
text for further details of the analysis.

‘g # of parameter estimates likelihoods
< .
g | fish r o a lo o ratio | BIC
1989
3 57 3.70 6.68 0.202  -196.6¢ -195.56 2.19 -1.86
10 52 4.48 7.18 0.248 -168.49  -168.00 0.96 -2.p9
15 55 6.58 9.02 0.202 -171.46 -171.46 0.00 -4.01
17 53 5.32 8.53 3.012 -151.52 -151.4]8 0.09 -3.88
26 60 8.21 10.12 3.011 -143.183  -142.85 0.55 -3.p4
33 41 12.90 9.50 0.968 -79.28 -79.22 0.03 -3.69
34 64 12.39 17.07 3170 -138.78 -138.15 1.16 -3,00
1990
3 52 8.56 9.86 3.128 -119.82 -119.4&3 0.70 -3.25
8 62 5.88 10.74 1921 -177.67 -177.34 0.65 -3.47
10 80 4.79 9.73 1.67p -246.49  -246.30 0.38 -4.p0
1991
4 84 3.80 5.19 1.265 -248.59 -248.53 0.11 -4.83
10 62 5.27 8.48 3.308 -177.90  -177.89 0.04 -4.p9
16 63 10.32 11.91 4.889 -137.9D -137.63 0.b4 -3J60
1992
2 57 3.91 7.03 1581 -178.31 -178.01 0.61 -3.44
1993
4 59 443 6.22 0.311 -182.6( -181.88 1.43 -2.65
9 47 6.45 7.59 4305 -117.8¢ -117.83 0.06 -3.79
15 58 10.49 7.32 6.797 -114.68 -113.49 2.38 -1.68
21 69 11.68 10.82 4.158 -135.66 -135.57 0.19 -4)04
26 84 12.96 12.41 4.074 -160.8p  -160.35 0.90 -353
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consistent with the results from the radio-tracking data.

| was not able to successfully apply the more complex models (diel delay and double

exponential delay) to these data. There are probably too many parameters to be fit.

The results from the steelhead are somewhat perplexing. On the one hand, for 13 out of
19 cohorts, we would select the model with the delay component based on the BIC criterion
(Table 5.6). The parameter estimates, however, have a great deal of variability with some
unrealistically high values for and unrealistically low values far. | would be very
hesitant to use these results. The added component seems to make up for some of the
deficiency of the null model for this data but in a biologically unrealistic and inconsistent

manner.

The results for the fall chinook are contained in Table 5.7. The results appear to be
positive — 5 out of the 6 cohorts had positive BIC values, some of which were quite high.
Also there is a fair degree of consistency among parameter estimates, which is desirable.
Most of the values afi are close to 0.1, resulting in an average waiting time of 10 days.
The 1992 results are not as positive as the 1991 and 1993 results. 1992 was an extremely

low flow year, and the behavior of the fish may have been affected by this.

Figure 5.6 contains plots of the cumulative of the best fit model compared to the
cumulative travel times for the six cohorts. The plots of the cohorts from 1991 and 1992
(the first three plots) indicate some inconsistency between the model and data. The plots of
the 1993 cohorts, on the other hand, show a great deal of consistency between the model

and data. Clearly more years of data will help to elucidate these differences.

5.4. Predicting model parameters and trael times

The application of the two parameter, travel time model (equations (4.7) and (4.8)) to

brand and PIT tag data in the previous chapter revealed quite a bit of variability in
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Table 5.6Results from the application of the travel time/delay model to Snake River steelhead
PIT tag data. Each row is a cohort. A negative BIC value lends support to the null model. See text for
further details of the analysis

*g # of parameter estimates likelihoods
e .
g | fish r o a lo In ratio | BIC
1989
4 45 44.49 3.93 0.869 -83.59 -75.15 16.88 13,08
63 29.93 4.48 0.968 -81.6( -75.04 13.11 8.p7
11 79 41.33 0.10 0.88p -101.52 -88.14 25.57 21/20
1990
2 51 20.43 5.25 0.771 -79.07 -77.15 3.84 -0.p9
7 86 17.14 3.01 0.779  -134.72 -124.82 19.80 15)34
15 80 23.72 1.94 0.71p -152.68  -133.45 38.06 33|67
18 55 14.58 18.35 2822 -109.54 -108.715 1.60 -2/41
24 60 23.45 0.20 0.761 -86.53 -80.06 12.93 8,83
1991
3 49 9.61 10.63 3.29y -107.54  -107.10 0.88 -3.p1
6 68 21.22 6.62 0.758 -111.19 -106.90 8.58 4.36
14 85 24.91 4.13 1.318 -112.02 -94.14 35.Y6 31)31
16 339 23.70 14.98 8.373 -445.6R -440.32 10,60 477
1992
6 72 26.24 7.99 0.91f -131.02 -110.83 40.39 3611
9 69 22.26 0.69 0.60p -123.11 -105.97 34.28 30/04
13 40 12.85 10.38 5.954 -71.46 -71.28 0.35 -334
1993
2 51 11.80 15.63 2954 -110.26 -109.50 1.52 -2.41
9 72 18.92 15.95 6.944 -113.12 -112.68 0.89 -339
11 97 36.90 0.82 0.714  -156.0% -131.73 48.63 44106
20 61 41.29 2.40 0.91y -81.87 -69.57 24.61 20J50
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Table 5.7 Results from the application of the travel time dependent mortality model to mid-
Columbia fall chinook PIT tag data. Each row is a cohort. A negative BIC value lends support to
the null model. See text for further details of the analysis

‘g # of parameter estimates likelihoods
S | fish
8 | 1S r o o lo Iz rato | BIC
1991
1 154 4.60 11.95 0.098 -655.93 -642.39 27.07 22)03
1992
2 73 4.76 6.23 0.1183 -272.21 -271.75 0.91 -3.88
3 68 4.14 5.74 0.306 -250.37 -244.51 11.72 7.60
19933
2 81 5.65 3.83 0.081 -316.31 -309.19 14.27 9.88
4 75 5.74 1.90 0.090 -272.0( -264.44 15.13 1082
5 118 5.36 3.39 0.100  -446.97 -426.93 40.08 3531

parameter estimates among cohorts (see Table 4.2, Table 4.4, Table 4.5, and Table 4.6). In
order to use the model in a predictive mode, parameter values must be selected

Thus it would be desirable to relate some of this variability to external factors, making
parameter selection more efficient. In this section, | relate parameter estimates from the
travel time model to the factors date of release and average river flow in regression models.
| apply the regression models to two data sets. The first is the Snake River trap run-of-the-
river chinook that have been analyzed previously. The second group are run-of-the-river
spring chinook that were captured and released at the Clearwater River trap and recaptured
at Lower Granite Dam, 61 kilometers downstream. Both of these groups were tagged each
year from 1989-1993. The parameter estimates and covariates associated with the cohorts

for these two groups are provided in Appendix 2 in Table A2.1 and Table A2.2. After an
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Figure 5.6 Plots of the cumulative travel times for the mid-Columbia Fall chinook. The solid line

represents model predictions, and the points are the data.
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initial analysis of these data, | use the results of the regressions to predict arrival times. This
involves fitting the regression equations to four years of data and then applying the resulting

regression coefficients to a fifth year.

My procedure for applying the regression models is as follows. First, using migration
rate ) as a response variable, | construct a sequence of regression equations. The first four
are a sequence that increases in complexity; the last two result from dropping a coefficient
from the most complex of the first four equations. | then apply these regression equations
to the estimated migration rates on a yearly basis. For both of the data sets, there is
variability in the number of cohorts for each year, and | chose to analyze years that have at
least 20 cohorts. For the Snake River groups, 1989 and 1993 have 20 or more cohorts; for

the Clearwater Trap groups, 1991 and 1992 have 20 or more cohorts.

regression equations for migtion rate

Migration rate () will be predicted using the following six regression models:

model 1) The null model assumes thias unaffected by the two factors and has average

valuef3y:

r=Byts. (5.14)

Variation about the average rate is expresseg]. by
model 2 This model assumes a linear relationship between migration rate and flow:

ri = Bo+BiF; +&. (5.15)

River velocity is assumed to be proportional to river flow. The intercept @)ms(a

combination of directed movement independent of flow and a potential non-zero intercept

from the river velocity/river flow relationship.
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model 3 The linear flow and date model assumes that fish migrate more actively later
in the season, by migrating in the higher flow regions of the river and/or by spending a
greater proportion of the day in the river flow versus holding up along the shore The model

assumes a linear increase in migration tendency with date as expressed by the coefficient
B
ri = Bo+(By+BsD)F; +¢. (5.16)
model 4 A more realistic model of migration tendency would have fish migrating at a

minimum rate early in the season and reach a a maximum rate later in the season. Although

a number of models can produce this behavior, | have chosen to use

_ 1
I’(t) - rmin+rmax{1+exm_a(t_-|-o)):| : (5-17)

The term in the brackets is tlBDF of the logistic distribution. Early in the season fish
migrate at a rate of,,;,, and later migrate at a threshold rate Qf, + rmax To determines

when the migrate changes from low to high, andetermines the rate of this change. A
sample plot of equation (5.17) is provided in figure 5.7. Thus, the regression equation can

be formulated as a regression model

_ 1
r = BO+I31Fi +BZFi[1+exp(—a(t—To))} tE . (5.18)

model § This model eliminateB; from model 4:

_ 1

model 6 This model is created by removifig from model 4:
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Figure 5.7 A plot of equation (5.17) withiyin = 2.0,F max= 8.,00 = 0.2 and T = 110.

_ 1
i = BaFi+ BzFi[l + exp(—a (t —To))} TE -

regression equations fary

(5.20)
To predict values of | used the following two models.
model 1) The null hypothesis assumes tbas a constant plus error:

o, = Byteg.

(5.21)
model 2 This assumes that the “rate of spreading” is linearly related to migration rate.

In this formulation, | usé determined from the previous regressions, which is based solely
on river flow and date of release. The equation is:
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0; = Bo* Byl +5. (5.22)
| will select one of the six regression equations to determine in this equation.

Least-squares regression was used to fit each of the six modedstbtwo models for
o to the data from individual years. For all regressions, the parameter estimates and
standard errors, deviance, and coefficient of multiple determination are reported. Since the
residuals are not necessarily normally distributed, | will not conéiests for levels of

significance.

results of theagression analyses

The results of this regression analysis for migration rate of the Snake River chinook are
contained in Table 5.8 and for the Clearwater Trap chinook in Table 5.9. These results show

that some of the variability in migration rate can be related to the factors river flow and date

of release. For all 4 years of data analyzed, the muliﬁzbiﬁalues are greater than .736 for

model 3 through 6. The linear equation (model 3) works well; in three of the four cases, its
R? values are close to those of the nonlinear models. Although model 4 yields consistently

high R? values, the standard errors are high, diminishing its predictive capabilities, and in

one case (Clearwater trap, 1992) the regression results are unrealistic. Model 5 offers an

improvement over model 4. TR values are the same as or close to those of model 4, and
the standard errors are small. Model 6 does not work as well as model 5, and in one case
(Snake trap, 1993), it yields unrealistic results. Models 3 and 5 are the best candidates for
predicting migration rates. The advantage of model 3 is that is has one fewer parameter, but
the threshold time relationship contained in model 5 might be more realistic and can more
reasonably handle dates outside those observed in this analysis. A plot of regression model
5 forr is contained in Figure 5.8. Note that if Julian date is held constant, there is a linear

relationship betweenand date. Also, if flow is held constant, the nonlinear relationship



Table 5.8Regression results for the Snake River spring chinook. For models 4, 5Bardr,ip, andfs = I'max

parameter estimates (standard error)

model resid. m;zlt.
Bo B1 7 a To 5s

1989 n=23
model 1 6.90 (0.46) 109.30
model 2 | -13.69 (4.39) 0.22 (0.046|) 53.1f 0.514
model 3 -5.51 (2.60) -0.085 (0.048|) 0.0020 (0.00027 1450 0.867
model 4 -4.86 (2.94) 0.052 (0.16) 0.11 (0.15) 0.11 (0.12) 101.6 (21.0) 10.95 0.900
model 5 -4.49 (2.29) 0.16 (0.029) 0.089 (0.030) 95.0 (4.1 10/99 0.000
model 6 -4.07(8342.00) 4.23(8346.00) 0.015 (1.26)  -143.6 (1524Q0.0) 26.84 ).754

1993 n=25
model 1 7.91 (0.62) 231.10
model 2 -3.50 (1.89) 0.14 (0.023 86.9p 0.624
model 3 11.26 (5.10) -0.56 (0.23) 0.0044 (0.0014 61.08 0.736
model 4 21.80 (14.54) -0.28 (0.23) 0.18 (0.10) 0.34 (0.11) 116.3  (1.9) 28.08 0.900
model 5 3.89 (0.55) 0.069 (0.0071) 0.50 (0.29 1123 (1.5 33.60 0/855
model 6 0.057 (0.011) 0.052 (0.012) 0.58 (0.69) 110.3 (2.4 44.09 0}809

9T



Table 5.9Regression results for the Clearwater Trap spring chinook. For models 4, and §,i, andBo = I'max

el parameter estimates (standard error) resid. méjzlt'
Bo B1 B2 a To 5S

1991 n=25
model 1 3.92 (0.32) 60.54
model 2 -8.06 (1.37) 0.19 (0.021 13.88 0.772
model 3 6.49 (2.01) -0.30 (0.064 0.0024 (0.00031) 370 0.939
model 4 3.55 (4.81) -0.026 (0.11) 0.078 (0.065) 0.14 (0.1b) 1122 (1.8) 3.28 0.946
model 5 2.26  (0.30) 0.065 (0.0067) 0.18 (0.048) 112.0 (1.3 332 0945
model 6 0.042 (0.0037 0.048 (0.0054) 0.25 (0.077) 1115 (1.1) 3.55 0.941

1992 n=35
model 1 414 (0.32) 120.00
model 2 1.02 (1.16) 0.067 0.024 97.31 0.189
model 3 5.21 (0.46) -0.28 (0.023 0.0023 (0.00014) 10)34 0.p14
model 4 4.02 (3.54) -2.15 (600.95) 2.33(601.00) 0.0080 (0.41) -200.9 (50000.3) 10.64 0.911
model 5 2.84 (0.20) 0.13 (0.027) 0.10 (0.03 131.7 (5.6 10(64 0011
model 6 0.072 (0.0031 0.096 (0.011) 0.26 (0.12) 133.8 (3.6 15.21 0,873

LT
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Figure 5.8 A plot of regression model 5 féir(equation (5.19)). For this plfdg= 2.0, =0
=0.1, andlg = 118.



betweernr and date is apparent.

Based on the results of the previous regressions, | used model 5 to determine

o regressions. The results of these regressions are contained in Talileab fur cases

Table 5.10Regression results using estimateg @fs the response variable.

129

el parameter estimates (stand. error)resi d. mlszlt'
Bo B1 59

Snake trap 1989

model 1 9.23 (0.48) 115.60

model 2 3.03 (0.95) 0.90 (0.13) 36.12 0.64
Snake trap 1993

model 1 7.33 (0.38) 87.75

model 2 3.29 (0.75) 0.51 (0.089 36.06 0.58
Clearwater trap 1991

model 1 6.27 (0.35) 73.38

model 2 2.67 (0.58) 0.92 (0.14) 25.16 0.65
Clearwater trap 1992

model 1 7.17 (0.51) 307.00

model 2 0.80 (0.52) 154 (0.12) 47.70 0.84

there is a positive linear relationship betweeandr R2 = .589 - .845).

predicting tavel times

for the

The goal of the regression analysis is to determine model parameters based on

predicting factors. These in turn will be used to predict the arrival distribution of fish at a
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downstream site based on the passage distribution at an upstream site. In this section, |
demonstrate this procedure by using the results from regressions to try to predict the arrival
times of the 1993 Snake trap chinook cohorts and the 1992 Clearwater trap chinook (since
the 1993 sample size is small) at Lower Granite Dam. In this analysis, | apply the two
parameter travel time model with parameters predicted for each cohort to determine
predicted arrival time distributions at Lower Granite Dam. | then pool together the
predicted arrival distributions for the cohorts to yield an arrival distribution for all the fish
through the year. This distribution is compared to the data and the sum of the squared

deviations is reported.

For comparison purposes, | use three approaches to determine model parameters. In the
first approach, | pool together the cohorts from the four other years, apply regression model
5 for r and model 2 foro, and determine regression coefficients for these data. The
regression coefficients along with the covariates date of release and river flow are then used
to determine model parameters for the fifth year’s cohorts. This approach uses independent
data from four years to predict arrival time distributions for the fifth and is the standard

method for using the travel time model predictively.

In the second approach, instead of using independent data to determine regression
coefficients, | use the “in-year” regression coefficients to predict model parameters. In other
words, | take the regression coefficients from the 1993 analysis (reported in Table 5.8) and
use the 1993 covariates to determine model parameters for the 1993 cohorts. Again, | use
model 5 forr and model 2 foo. This is a bit circular but represents the best that these

regression equations can do if we have perfect knowledge of the regression coefficients.

The third approach uses the maximum likelihood estimates (mle’s) of the model
parameters for each of the cohorts. This represents the best that travel the model can do to

predict arrival times if we have perfect knowledge of the individual cohorts.
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The regression results for the four years pooled data are contained in Table 5.11. These

Table 5.11Results from the application of regression model 3 fand model 2 foO
to the Snake trap and Clearwater trap spring chinook four year composite data.

parameter estimates
resid. mult.
model (standard error) 1
SS
Bo B2 a To

Snake trap chinook 1989-1992
model 5 1.53 0.099 0.099| 105.8 81.20 0.681
forr (0.69) (0.019)| (0.036)| (3.9)
model 2 2.50 0.95 145.90 0.519
for 0 (0.31) | (0.12)

Clearwater trap chinook 1989-1991, 1993

model 5 2.61 0.14 0.096 | 129.3 61.97 0.840
forr (0.39) (0.030)| (0.028)| (4.8)
model 2 6.04 0.21 222.6 0.060
for 0 (0.54) | (0.11)

are the coefficients to be applied to the fifth year’'s data with the first method outlined above.
Even with the pooled data, the regressions foe reasonabléef =.681 and .840). Far,

the Clearwater trap regressions had a veryR8walue, indicating that this model offers

little improvement over the null model of constant

Plots of the predicted arrival distributions and the actual observations are shown in
Figure 5.9 (Snake trap) and Figure 5.9 (Clearwater trap). For the Snake trap spring chinook,
the predicted arrival distribution based on independent data (top plot) captures the general
shape of the data but misses some of the details. The predicted arrival distribution based on
the “in-year” regression (middle plot) reduces the sum-of-squares by 18 per cent and begins
to capture some of the bimodality of the data. The predicted curve based on the mle’s is

sharply two-peaked (bottom plot) and confers an additional 46 per cent reduction in the
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Figure 5.9Plots of predicted arrival times (solid line) and observed arrival times (points) for the
Snake River trap chinook. In the top plot, the predicted curve is based on independent data. In the
middle plot, the predicted curve is based on an “in-year” regression to determine travel time
parameters. In the bottom plot, the predicted curve is obtained after estimating travel time
parameters for each cohort. Also, the sum of the squared deviations between model and data is

reported for each plot.
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Figure 5.10Plots of predicted arrival times (solid line) and observed arrival times (points) for
the Clearwater trap chinook. In the top plot, the predicted curve is based on independent data. In the
middle plot, the predicted curve is based on an “in-year” regression to determine travel time
parameters. In the bottom plot, the predicted curve is obtained after estimating travel time
parameters for each cohort. Also, the sum of the squared deviations between model and data is
reported for each plot.
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sum-of-squares, a substantial improvement over the previous two. It is interesting to note

that while the “in-year” regression for migration rate ha&%of .855 and .589 fag, using
the actual mle’s reduced the sum-of-squares of the arrival distribution by over 50 per cent

(that is, comparing the middle and bottom plots).

For the Clearwater trap fish (Figure 5.9), the “in-year” regression based arrival
distribution reduces the sum-of-squares by 10 per cent, and the mle based distribution by
an additional 15 per cent over the arrival distribution based on independent data. In this
case, the arrival distribution based on independent data performs well when compared to

the “in-year” arrival distribution.

For both these two data sets, the arrival distribution based on independent data captures
the general shape of the observations. While comparisons to the plots based on “in-year”
regressions and on mle’s indicate that improvements could be made, these improvements
may not necessarily enhance the utility of the model. The types of management actions
based on these plots (such as increased spill or augmented flows) would probably not be
tuned to fine scale variability but would be based on the gross features captured by the top

plots.



6. Travel time model with individual covariates

6.1. Introduction

The models developed in the preceding chapters have all assumed that cohorts of fish
released at the same time have identical behavior, an assumption that makes the models
more tractable. In reality, the cohorts are probably heterogeneous, and variability may exist
in characteristics that affect individuals’ behavior and ultimately their travel time. In this
chapter, | develop procedures for incorporating individual variability into the travel time
model. Individuals can be distinguished by biotic and abiotic factors, and relating
variability in travel times to variability in individual covariates will enhance the predictive

capabilities of the models.

The biotic trait that | incorporate into the model is fish length. The lengths of all PIT
tagged fish are measured at the time of release, and the effects of this covariate can be
determined for single release groups. The abiotic factors | examine at the individual level
are average river flow, dates of release, and river temperature. Since fish released at the
same time encounter similar levels of these factors, series of releases from the same point

are required to examine the effects of these covariates.

In the next section of this chapter, | develop the models that include individual
covariates and statistical procedures to analyze them. In the following sections, | apply the
technique to several data sets. | first apply the model with only the length covariate, since
this covariate is commonly available and varies within single release groups. This model is
applied to several releases of spring and fall chinook and steelhead. | then expand the model
to incorporate date of release, river flow, and river temperature and apply this to a series of

releases of fall chinook in the Snake River in the years 1991-1993 and sockeye released in
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the mid-Columbia in the years 1992 and 1993.

6.2. Development of model and statistical technigue

| assume that each fish has an arrival distribution based on equation (4.7), but its

migration rate (determined by the parame}és uniquely determined based on a covariate

vector X;. In other words, the arrival distribution of tih individual is g;(t;0, X;) ,

determined by the parameter vecgor , which is common to the group, and the covariate

vectorX;, which is unique to the individual. The parameter vector is defined as

8 = (By By By - By 0). (6.2)

and in the simplest casgjs determined by a multiple linear function of the covariates and

B’s:
= Bt BiXip +ByXip t . +BpXiF. (6.2)

Alternatively, the covariates anf’'s may be incorporated in mechanistic functions

motivated by salmon biology.
If t; is the observed arrival time of titl individual, the likelihood function is:

n

L(8, X;) = |_| gi(t:X;, 9) . (6.3)

i=1

The parameters can be determined by maximizing the log likelihood function,

n

1(8) = logL(@) = % logg;(t;;X;8) . (6.4)
i=1

with respect to@ . This is performed numerically using the downhill simplex method

(Nelder and Mead, 1965; Press, et al., 1988).
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To analyze the importance of each covariate, | construct a sequence of nested models
beginning with the simplest model that contains only the intercept term to the fullest model
with all the covariates. The covariates are added one at a time. For each alternative model,
parameters are estimated, and likelihoods are computed. The importance of each additional
covariate (in the form that it is included in the model) is assessed by comparing the

likelihoods and BIC values of alternative models.

6.3. Applications with length covariate

The importance of fish length to migration rate has been analyzed in several studies
(Brett, Hollands, and Alderdice, 1958; Washington, 1982). Longer fish are generally more
mature (in terms of age and smoltification) and are expected to migrate at a faster rate than

shorter fish. As a first application of the procedure, | compare the null hypothesjsshat
constant within a cohort to the alternative hypothesigiimatinearly related to fish length.

In other words,

Ho: ri = By

i = Bp+ By Hength.

I
>,
I

For each cohort, likelihooddgy andl,, are computed for the null and alternative
hypotheses respectively. Comparing these two likelihoods yields an assessment of the
performance of the two models relative to each other. With a likelihood ratio test, the null
hypothesis is rejected at the 0.05 level if the ratio is greater)(ﬁ@05): 3.84. Using

Akaike’s information criterion (AIC) the null model is rejected if the ratio is greater than
2.0. Using the Bayesian information criterion (BIC), the null model is rejected if the BIC

for the length modelRIC)) is greater than the BIC for the null modBICy), and | report

the valueBIC, - BIC,. | will use these values as a rough measures of the relative
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performance of the two models.

Three sets of cohorts are analyzed in this section. The first two sets are Snake River
spring chinook and steelhead analyzed in previous chapters. The third set is the mid-

Columbia fall chinook.

results

The results of the analysis of the 3 data sets are contained in Table 6.1 - Table 6.5. These
tables provide averages and standard deviations of length for each release group. Also
contained in the tables are parameter estimates for the length model as well as log
likelihoods for the null and alternative models, the ratios between the two, and the BIC

values.

There is some support for the length model in the Snake River chinook cohorts (Table
6.1 and Table 6.2). Nine out of the 18 cohorts had likelihood ratios greater than 2.0, which
is the AIC value at which the null hypothesis is rejected, but the null model is only rejected

for five out of 18 cases based on the BIC values. The parameter estimate results are

somewhat contrary to what | expected, however. In 14 out of 18 coﬁ@rts, IS negative,

indicating that the model predicts increasing migration rate for decreasing fish lengths. This

is also true for 8 out of the 9 cohorts that had likelihoods ratios greater than 2.0.

The results for the steelhead (Table 6.3 and Table 6.4) are similar to the Snake River
chinook results. Five out of the 19 cohorts had likelihood ratios greater than 2.0, and three

out 19 has positive BIC values, supporting the null model in most cases. Also, eight out of

19 had negative values fﬁﬁ

Although the length covariate appears to have some importance in the travel time model

for these two groups, it would be difficult to implement the length model based on these



Table 6.1Results from the application of the individual covariate travel time model with length covariate to cohorts of
Snake River “run-of-the-river” chinook. Note that a negative BIC value lends support to the null model (that is, the model
without the length covariate).

length parameter estimates likelihoods
cohort | # of

# fish mean s.d. Bo B1 o ) A ratio BIC
1989

1 55 | 128.25 9.28 3.61 -0.006 4.42 -177.51 -177.44 0.14 3.8

2 57 | 128.18 10.51 4.99 -0.015 7.02 -199.30 -199.07 0.4¢ -3.5

3 43 | 128.21 12.47 10.42 -0.056 7.26 -148.90 -147.10 3.6 0.4

4 64 | 134.77 12.06 15.49 -0.059 9.97 -159.53 -158.5( 2.0 2.1

5 69 | 126.26 18.92 12.81 -0.036 8.34 -156.14 -154.79 2.7 -1.5

6 66 | 124.61 18.06 9.53 -0.016 7.75 -152.75 -152.46 0.5 -3.6

7 64 | 115.88 17.39 4.16 0.030 11.26 -164.28 -163.79 1.04 -3.1
1990

1 54 | 115.07 13.02 16.86 -0.069 7.83 -114.29 -112.2Q 4.1y 0.18

2 66 | 118.95 14.24 15.49 -0.077 10.07 -182.78 -179.99 5.58 1.3

3 52 | 117.13 15.14 9.54 -0.028 5.90 -122.53 -121.38 2.29 -1.6p

6€ET



Table 6.2Results from the application of the individual covariate travel time model with length covariate to cohorts of
Snake River “run-of-the-river” chinook. Note that a negative BIC value lends support to the null model (that is, the model
without the length covariate).

length parameter estimates likelihoods
cohort | # of

# fish mean s.d. Bo B1 o lo (N ratio BIC
1991

1 55 | 124.22 12.06 4.00 -0.009 4.82 -178.31 -178.14 0.3 -3.6]

2 66 | 128.32 9.84 9.03 -0.039 6.02 -197.19 -195.71 2.91 -1.2p

3 51 | 127.88 10.16 5.61 0.004 8.35 -135.23 -135.22 0.01 -3.9p
1992

1 50 | 130.00 9.32 8.14 -0.032 5.51 -147.50 -146.59 1.8 -2.1p
1993

1 60 | 127.08 10.77 1.67 0.015 5.18 -182.64 -182.25 0.7 -3.31L

2 46 | 123.72 11.22 10.29 -0.047 4.54 -124.04 -120.45 7.1 3.35

3 64 | 120.33 13.07 3.21 0.041 6.92 -135.87 -134.53 2.69 -1.48

4 57 | 122.02 10.87 12.48 -0.009 7.41 -95.49 -95.47] 0.04 -4.0p

5 74 | 121.14 18.26 -4.94 0.148 15.13 -154.11 -148.94 10.27 5.97

ovT



Table 6.3Results from the application of the individual covariate travel time model with length covariate to cohorts
of Snake River steelhead. Note that a negative BIC value lends support to the null model (that is, the model without the
length covariate).

length parameter estimates likelihoods
cohort | # of

# fish mean s.d. Bo B1 o ) N ratio BIC
1989

1 64 | 185.89 29.98 27.94 -0.042 12.62 -84.61 -83.51 2.2 -1.9p

2 79 | 182.48 20.62 8.13 0.058 17.19 -126.17 -125.68 0.97 -3.4p

3 47 | 168.94 17.28 18.66 -0.019 11.69 -90.22 -90.16 0.1] 3.7}
1990

1 61 | 182.57 23.54 15.63 -0.011 9.93 -101.38 -101.30 0.1y -3.94

2 95 | 176.74 14.80 0.67 0.067 6.84 -158.91 -154.53 8.74 421

3 146 | 171.97 16.02 8.33 0.021 12.01 -287.36 -287.11 0.50 -4.49

4 68 | 173.94 16.79 6.42 0.015 13.98 -168.08 -168.02 0.11 -4.1p

5 61 | 169.43 17.40 11.38 -0.014 8.22 -128.11 -127.93 0.3% -3.76

T



Table 6.4Results from the application of the individual covariate travel time model with length covariate to cohorts of
Snake River steelhead. Note that a negative BIC value lends support to the null model (that is, the model without the length
covariate).

length parameter estimates likelihoods
cohort | # of

# fish mean s.d. Bo B1 o lo IA ratio BIC
1991

1 50 181.12 16.12 6.17 0.023 7.15 -89.39 -89.07 0.64 3.2y

2 126 178.67 15.29 24.78 -0.055 10.62 -201.54 -199.94 3.15 -1.69

3 56 173.95 16.23 13.99 -0.005 9.45 -94.36 -94.35 0.0 -4.01

4 51 165.82 17.33 11.55 0.050 12.75 -68.50 -68.23 0.54 -3.39
1992

1 67 181.40 17.63 8.21 0.011 6.40 -114.00 -113.84 0.31 -3.80

2 154 176.60 17.70 17.05 -0.014 10.23 -245.01 -244.83 0.3p -4.68

3 90 171.41 14.71 15.14 -0.038 7.34 -214.97 -213.39 3.15 -1.36
1993

1 50 178.28 21.30 7.47 0.032 10.85 -88.79 -88.35 0.89 -3.08

2 87 177.00 20.10 -3.21 0.114 9.44 -123.06 -115.73 14.66 10.19

3 59 173.93 19.03 -13.20 0.183 17.88 -100.69 -97.86 5.6 1.59

4 40 175.38 16.32 10.32 0.032 12.18 -64.90 -64.77] 0.2¢ -3.48

A"
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data because of the variability in parameter estimates. More information will be required to
understand why the relationship between migration rate and fish length is sometimes

positive and sometimes negative.
The results for the mid-Columbia fall chinook (Table 6.5) strongly support the inclusion
of the length covariate in the travel time model. All the BIC values are positive, with 4 out

5 values greater than 10.0. Also there is consistency in the valfi@s of [31 and , with most
estimates o3, in the 3.0 - 5.0 range and most estimatgg of  in the 0.10 to 0.14 range.

Thus, including length information in the travel time model for these fish would be quite

useful.

6.4. Multiple covariate model

In this section | will extend the individual covariate model to include several covariates.
This approach is useful when fish are released over an extended period of time so that there
is not only variability in population traits but also in river conditions. It is also useful when
sample sizes for individual release groups are small, and cohorts of adequate sample size
cannot be formed from fish released over a short period of time. | apply this model to two
groups: fall chinook tagged in the Snake River above Lower Granite Dam during the years
1991-1993, and wild sockeye tagged at Rock Island dam on the mid-Columbia during the
years 1992 and 1993 and recaptured at McNary Dam.

In addition to the length covariate, | also incorporate the covariates date of release, river
temperature at release, and average river flow during the individual’s migration period. For
this analysis | add the covariates one at a time in sequential linear models. | chose to do this
for the sake of simplicity, but the covariates could be incorporated in nonlinear models
based on salmon behavior. Since the covariates are being added one at a time, the

importance of adding the new covariate to the previous model is observed. | add the



Table 6.5Results from the application of the individual covariate travel time model with length covariate to cohorts
of mid Columbia fall chinook. Note that a negative BIC value lends support to the null model (that is, the model without
the length covariate).

length parameter estimates likelihoods
cohort | # of

# fish mean s.d. Bo B1 o ) N ratio BIC
1991

2 97 63.32 4.38 -0.60 0.062 6.86 -393.05 -390.38 5.33 0.76
1992

1 75 71.37 7.16 5.11 0.125 5.58 -288.71 -264.16 49.11 44.79

4 63 69.00 7.21 -3.64 0.102 4.60 -239.05 -219.76 38.51 34.43
1993

1 61 66.80 6.49 -5.36 0.145 3.99 -222.15 -195.54 53.21 49.1p

3 115 66.20 5.46 -4.96 0.134 5.92 -425.60 -404.48 42.24 37.50

144"
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covariates as a multiple linear model in the following nested sequence:

Ho.ri = Bo

I
i
I

Bo *+ By DXy

Ho.ri = Bo+ By DXy + By DXy

Hairy = B+ By DXy + By DXy + B3 DXy,

Hy:ri = B+ By DXjq + By DXy + Bg DX + B, DXy,
where
Xy = fish length (in mm),
X5 = average river flow during the migration period (kcfs),
X3 = Julian date of release, and

X4 = river temperature (degrees centigrade) at time of release.

Other sequences could also have been used.

| apply this sequence of models to each year of data from both data sets. | estimate
parameterdy’s ando) and report likelihoods for each model. The effect of added covariates
can be assessed by computing likelihood ratios between successive models and by
comparing BIC values. Note that in this case, | report BIC values for the individual models,
so that any of the two models can be compared directly, with the simpler model (that is, the

one with fewer parameters) being rejected if it has a lower BIC value.
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results

The results for the Snake River fall chinook are contained in Table 6.6. The covariate
date of release is extremely important in all three years, with likelihood ratio values ranging
from 22.86 to 104.28 larger than the next smaller model nested within (i.e., comparing the
model with length flow and date to the one with length and flow). On the other hand, the
temperature covariate is never important, with likelihood ratio values ranging from 0.0 to
0.79 larger than those of the model nested within. Length and flow both appear to be
important covariates, but the results are not as strong as with the date covariate, particularly
in the 1992 data. For all three years, it appears that the best model is the one with length,

flow, and date (model 3).

The results for the sockeye are contained in Table 6.6. The length covariate appears to
be the most important with large increases in the likelihoods relative to the null model. Flow
is also important, with large increases in the likelihoods associated with adding this
covariate to the model. Also, date appears to be an important covariate but not as important
as the previous two. In both years, temperature had little effect on the model. The order of
inclusion may have some importance on the relative importance of the covariates, but it
appears that the best model should incorporate length, flow, and date, as with the fall

chinook.

log likelihood vesus l@ sigma

An interesting result is observed by plotting log likelihood versus log sigma for the 5
alternative models in each of the three years (Figure 6.1). In each year the relationship
between these two variables is almost perfectly linear. The inverse relationship indicates
that some of the variability in arrival times that was attributed to random movement in the
null model is actually the result of population heterogeneity. Thus the more relevant

information about the individuals available, the more precise the predictions about arrival
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Table 6.6Results of the application of the individual covariate model to Snake River fall chinook.
Note that the BIC values are reported for each of the hypotheses. When two hypotheses are compared,
the simpler model is not rejected if it has a larger BIC value than the more complex model.

'% parameter estimates likelihoods

=

§ Bo By B, Bs Bs o lik. | ratio | BIC;

£ | (int) | (len.) | (flow) | (date) | (temp) :
1991 n=32

0 1.41 4.91 -142.04 -291.01

1 -1.56 0.044 4.18 -136.90 10.27 -284.20Q

2 -3.41 0.050 0.028 3.74 -133.3] 17.45 -280.48

3 -17.07 -0.019 0.072 0.099 2.61 -121.88 40.31 -261.09

4 -16.79 -0.018 0.072 0.097 -0.0137 2.61 -121.86 40.34 -264.51
1992 n=40

0 3.03 11.27 -164.59 -336.56

1 -2.25 0.069 10.58 -162.07] 5.05 -335.20

2 -5.66 0.074 0.074 10.20 -160.61 7.96 -335.98

3 -43.91 0.004 0.343 0.234 5.95 -139.04 51.10 -296.92

4 -42.78 0.010 0.331 0.215 0.1082 5.89 -138.65 51.89 -299.43
1993 n =251

0 1.42 6.89 -1174.27 -2359.59

1 -1.07 0.034 6.05 -1156.74 35.07 -2330.04

2 -3.39 0.043 0.023 4.90 -1119.92 108.7 -2217.74

3 -15.43 0.014 0.053 0.076 3.73 -1067.18 212.98 -2163.19

4 -15.43 0.014 0.053 0.075 0.0002 3.73 -1067.[/8 212.98 -2168]71
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Table 6.7 Results of the application of the individual covariate model to mid-Columbia sockeye.
Note that the BIC values are reported for each of the hypotheses. When two hypotheses are compared,
the simpler model is not rejected if it has a larger BIC value than the more complex model.

[%2) . . .
@ parameter estimates likelihoods
e
Is)
a | Bo B B2 Bs By - . |
= . o lik. ratio BIC ;
£ | (int) | (len.) | (flow) | (date) | (temp)
1992 n =148
0 16.37 35.11 -495.68 -1001.35
1 -14.50 0.265 29.63 -470.42 50.53 -955.83
2 -46.60 0.292 0.504 26.58 -454.35 82.67 -928.69
3 -63.34 0.266 0.459 0.192 25.95 -451.0( 89.3) -926.99
4 -63.62 0.267 0.461 0.193 0.0015 25.99 -451.00 89.37 -931.98
1993 n=>521
0 21.24 40.83 -1627.24 -3266.99
1 -33.85 0.612 31.24 -1499.07 256.35 -3016.91
2 -34.55 0.497 0.099 30.59 -1477.0B 300.48 -2979.048
3 -22.91 0.609 0.142 -0.213 30.07 -1470.92 314.45 -2971.81
4 -23.15 0.610 0.143 -0.212 0.0002 30.17 -1470.p0 314.47 -2977(54




149

o
L0 4
b 1992
i sockeye
xR ]
=<
m 1
2
o
o) 4
5
325 335 345 355
log sigma
1991 fall
] chinook
o
XM 4
=
(@]
o
o
< |
A
1.0 1.2 14 1.6
log sigma
S 1993 fall
2] chinook
~x O ]
= g ]
8+
o
(o]
Q.
A
1.3 15 1.7 1.9
log sigma

o 1993
34 o sockeye
i
x
(@]
o
o
o
2
-
3.40 3.50 3.60 3.70
log sigma
| 1992 fall
) chinook
< A
—
=2
S
i
Lo
© J
FI' T T T T
1.8 2.0 2.2 2.4
log sigma

Figure 6.1Plots of log likelihood versus log for the 5 alternative models.




150

times will be. This analysis found that the covariates fish length, river flow, and date of
release are important; other covariates may also be determined to be important, further

increasing the precision.



7. Movements of individuals

7.1. Introduction and motivation

In constructing models of the dispersal of organisms, one of the basic choices is
whether to focus on individuals or populations. This choice is often dictated by the
objective of the model. For instance, models of the spread of populations on the time scale
of generations needn’t be concerned with individual movements. On the other hand, most
population dispersal models do make assumptions about the movements of individuals,
and, particularly if the model operates on relatively short time scales, it is often informative
to determine the validity of the assumptions. Analyzing data of individual movements is a

means of doing this.

One of the assumptions of the travel time model described previously (equations (4.7)
and (4.8)) is that the movements of individuals follow a Wiener drift process. A restrictive
property of this process is that disjoint movement increments are independent, no matter
how fine the time scale. Clearly this property is limiting in describing the movement of
animals. In the short term, an animal moving at a particular velocity will likely continue at

that velocity. In the longer term, however, independent increments may be realistic.

Analyzing group release travel time data, as | have done in previous chapters, cannot
confirm the Wiener drift process assumption. With this type of data, information about
individual movements is lost, and several different movement processes could produce
similar arrival distributions. To overcome these limitations, | analyze the movements of
juvenile salmonids observed in radio-tracking experiments. | compare these data to two
models: the Wiener process and a model based on the Ornstein-Uhlenbeck process. This

latter model has the following two properties: 1) In the short term, disjoint increments are
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correlated; and 2) as the time increment gets large, the process becomes indistinguishable
from the Wiener process. In addition, the models are nested; as the correlation parameter in

the O-U based model gets large, the behavior of the two models approaches each other.

In analyzing the radio-tracking data, | will address the following questions: 1) Is the
distribution of movements consistent with the models, and if so, which model is more
appropriate; and 2) is the correlation among movements important at the time scale of the

data.

7.2. Models

Wener pocess

The Wiener process (or Brownian motion) is the continuous analog to the standard
random walk (Ross, 1985). The Wiener process with drift can be derived from a biased
random walk, a random walk in which the probabilities of moving to the right and to the
left are not equal (but are constant). The progggss said to be the Wiener drift process

if it has the following properties (Ross, 1985):

1) X(0) = 0;

2) fort > 0, X(t) is normally distributed with meam and variancet

3) each disjoint segment of an individual path is independent.

As stated above, the major drawback of this process for modeling movements of organisms

is property 3.

telegrapher’s equation

A natural extension of this model that incorporates correlation among movements is
based on a correlated random walk. The correlated random walk is presented as follows.

Let X; be a discrete time, discrete space processyiitlintegers t=afd1, 2, .... The
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transition probabilities oX are defined as follows:

p = Pr(particle moves one unit in the same direction as the previous movement)

g = Pr(particle moves one unit in the opposite direction of the last step)

p+q=1. (7.2)
The standard initial conditions are that x 0, and for the first step, the probability of

moving to the right = the probability of moving to the left = 1/2.

Following the approach of Goldstein (1951), it is possible to derive a limiting
continuous distribution based on this process called the telegrapher’s equation:

64

0 0°
WP(X, t)+ ZAEP(X, t) = Vzﬁp(x, t). (7.2)

The same result can be obtained by beginning with the continuous (in time and space)
analog to the correlated random walk. In this process, a particle moves in one direction with
a constant spegduntil it reverses direction and then moves in the opposite direction with
the same speed. The direction reversing process is governed by a Poisson process with

parametel.

The first two moments of the displacement process defined by the telegraph equation

are easily obtained and are quite tractable:

E(X) =0 (7.3)
var(X) = yz[%—%z(l—e—”‘t)} . (7.4)
For smallt

Var(X) = y2t2 (7.5)
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which is characteristic of wave equations. Also whisnarge

y2
Var(X) = X (7.6)
which is similar to that of the Wiener process with diffusion coeffident y2/ 2\
Equation (7.2) can be solved fa(x,t) with initial conditions p(x,0) = 0 and

op/ox(x0) =0

A
P(x 8 = S [8(x=y0) + 80+ v0) + 2o + J1, (] &

A = ANJt2=x2/y2 | (7.8)

wherel ,andl, are modified Bessel functions abit the Dirac distribution. Unfortunately,
the pdf derived from this equation is rather complex and is probably not practical as a model
of animal movement at the level of the individual, although it has been applied to

population patterns (Holmes, 1993).

0O-U based model

An alternative model of correlated movement is based on the Ornstein-Uhlenbeck (O-
U) process (Uhlenbeck and Ornstein, 1930). The O-U process was first presented as an
alternative model for Brownian motion and was developed to describe the velocities of
particles. The model operates under the assumption that as a particle travels with greater
velocity, it is increasingly likely to contact another particle and meet resistance. Thus, there
is a tendency for particles to be brought back to zero velocity, and with the O-U process,
the strength of this tendency is linearly related to the magnitude of the velocity. There is
correlation between movements occurring over short periods of time and a tendency to

return to zero velocity. This type of process resembles, in some cases, the movement
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patterns of animals on a short time scale. From this velocity based model, the distribution

of displacements can be obtained, which is compatible with individual movement data.

To begin, leX(t) be the position of a particle at timéefineV(t) as the velocity at time
t. Since the O-U process applies to particles with zero mean velocity, the mean must be

subtracted off. Denote

u(t) = V(1) -V . (7.9)

If U(t) follows an Ornstein-Uhlenbeck process, then:

Z
op

s (7.10)

d _ 0 02
P 9= SL(Bup)+

The parametes characterizes the spread of the particles, and the parghobi@racterizes
the propensity of the particle to return to its mean velocity. The conditional distribution

p(y, tjuy, s) , t> s,is a Gaussian distribution with

E(U(1)) = ugexp(—k) (7.11)
Var(U(t)) = -Zqé[l—exp(—ZBt)] . (7.12)

In contrast to the Wiener process, the variance of the O-U process stabitigetsdarge.

The displacements predicted by the process can be obtained by integrating:

t;
Y(T) = X(t)=X(ti_q) = J'U(S)dS . (7.13)
Gy

HereT, is defined as the time intervia} t;_;. This integration is considered a stochastic
integration because(s) is a stochastic process (Cox and Miller, 1965). As reported by

Doob (1942)Y has a Gaussian distribution with
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E(Y) =0 (7.14)

202

Var(Y) = F

[BT —1+ePT] . (7.15)

Interestingly, the mean and variance are the same as those of the telegrapher’s. equation

Also,

2
CovY,Y,,q) = CBLZ[l_e—BTi_e—BTi+1+e—B(Ti+Ti+1)] ) (7.16)

Thus the joint distribution of Yand Y, is a bivariate normal with mean and variance given

in equations (7.14) and (7.15) and with correlation coefficient

COV( Yi’ Yi + 1)

P(Y, Y1) = Var(yi)Var(Yi + 1)

_ [1- e_BTi — e_BTi+l + e_B(Ti + Ti+1)]
a (BT —1+ e PBTY2[BT — 1+ e BTiry] 22’

(7.17)

An important feature of this equation is that as the time scale gets larger, the correlation
decays. Also, the correlation coefficient depends onlf§ and not oro, and Figure 7.1

shows that there is an inverse relationship betvgeand p(Y;, Y;,,) . In addition, as

B - oo (with o/f3 a constant), the variance approaches a linear relationship with time, and
the covariance goes to 0. The process then becomes indistinguishable from the Wiener

process.

If the time increments are equal, the data can be analyzed with standard time series
analysis. If the data have unequal time increments, as with many radio-tracking studies, the

analysis is not as simple. The equations describing the Wiener drift process and the O-U
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Figure 7.1 The relationship between the paramegeedf3 based on equation (7.17). The time
increment isT; = Tj4q = 1.0.

displacement process do not require equal time increments, though, and thus can form the

basis of the analysis of unequal time increment data.

7.3. Statistical analysis

The data are a series of observations of an individual with the poXitipmoted at
timet, i = 0,1,2,..n. The data are converted to a two dimensional vegipi;j, where
Y, = X;—X;_4 is theith displacement and; = t,—t,_, is the time duration of the

displacement.

The first question | address is do $kis agree with property (2) of the Wiener process.

In other words, do thg's have the distributioN(rT;, c“T;) . To test this, | use Liliefor's
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test for normality (Conover, 1980). This is a Kolmogorov-Smirnoff type of test specific to
a population of normal variables with unknown mean and variance. The first step is to
estimate the parameterando, which are then used to determine mean and variance. | use

maximum likelihood to estimate the parameters. The likelihood function is

n

L(r,oY) = |_| fwly, T;ir, 0). (7.18)
i=1

The maximum likelihood estimator (mle) fors:

o Yi
f = z— 7.19
ST (7.19)
which is just the average downstream velocity of the individual. To estombpdug? into

the likelihood function and maximize Idg( with respect too numerically, using a

downhill simplex method (Press, et al. 1988).

The statistic of Liliefor's test measures the deviation of the observations from a
cumulative normal distribution. This statistic is compared to a lookup table to determine the

approximate probability. Normality is rejected for snpallalues.

The third property of the Wiener process is independent increments. If normality is

rejected, then the increments can be transformed to standard normal variables as follows:

_ (Y -TTy)

Z =1 U
| 6_/\/?I

The property of independence of successive increments can be tested for by determining

(7.20)

whether thez’s are uncorrelated. (In general, showing that two random variables are
uncorrelated does not demonstrate independence; in the case of normal random variable,

however, it does). The correlation between successive movements can be determined by
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computing the correlation coefficient

n-1
1
P(Zi, Zi,q) = n-1 z Zi i, q, (7.21)
i=1
wheren is the number of movement increments observed. To test the null hypothesis of no
(or negative) correlation among succesgigversus the alternative hypothesis of positive

correlation, the test statistic

(7.22)

is compared to adistribution withn-2 degrees of freedom (Sokal and Rohlf, 1981). The

null hypothesis is rejected for smpilvalues.

To estimate the parameters for the O-U based model, | follow a similar procedure. I first
subtract off the average (time scaled) displacement from the observations. This is identical

to the first step above and can be expressed as

Y. =Y, —Ft. (7.23)
The transformed variabl' has mean displacement of 0. The likelihood function is

n-1

L(o,B;Y") = |_| fou(Yi Yis150,B), (7.24)
i=1

wherefqy is a bivariate normal distribution with parameters defined in equations (7.14),
(7.15), and (7.16). Again, the parameterand3 are estimated by maximizing the log of

(7.24) numerically with respect to the parameters.

The importance of the paramef&rwhich determines correlation in the O-U based
model, can be assessed by computing the log likelihood ratios and BIC values. | report the

difference between the BIC values for the O-U based model and Wiener drift model. The
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null model (Wiener drift model) is rejected for positive BIC values.

7.4. Application to radio-tracking data

data

The study site is the John Day reservoir on the Columbia River in front of the John Day
Dam (Giorgi, et al. 1986). At this site, the river is relatively straight and is approximately a
kilometer wide. The study was conducted during the Summer of 1983. Individual fish were
collected at the John Day Dam, radio tagged, and released 6.3 kilometers upstream from
the dam. Two boats followed the individuals with the fish’s position being noted by hand
held receivers at approximately 20 minute intervals. The individuals were followed for up
to eight hours with radio tracks up to six kilometers long. 17 chinook and 8 steelhead were
released and followed. Many of the individuals had tracks that were too short for adequate
analysis. | chose to analyze the tracks of the three chinook and two steelhead that had at
least 19 “fixes” and track durations of at least six hours. Since the primary interest in these
data is the downstream movement of the individuals, | ignored the horizontal movements
of the fish and converted the data to downstream displacements. Figure 7.2 contains plots

of downstream displacement versus time for the five individuals.

results

The results of the data analysis are contained in Table 7.1. For two out of three of the
chinook and one out of two steelhead, normality is not rejected based on Liliefor’s test. For
both of these chinook, though, zero or negative correlation is rejectecbat OS5 level.

For the steelhead (steelhead 170), zero or negative correlation is not rejected, and thus the

two properties of the Wiener process are not rejected for this individual.

For the three chinook, the O-U displacement model is supported over the Wiener drift

model based on BIC values. For the two steelhead, the opposite is true, and the simple
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Figure 7.2 Plots of downstream displacement versus time for the radio tagged,
individual chinook and steelhead. The slope of the straight line represents the average
downstream displacement rate.



Table 7.1Results from the radio tracking data analysis. The test on the correlation coefficient is only conducted for the indiviéuadsmdiéy
is not rejected based on Liliefor’s test. For Liliefor’s test, normality is rejected fqo-kalues (typicallyp < .05). Based on the BIC value, the null
model (the Wiener drift model) is rejected for positive values. Other details of the analysis are contained in the text.

track information Wiener process O-U based likelihoods
model
rameter Liliefor's rrelation
N #0f | length parameters li correlatio i R .
Individual | .. . o B ratio BIC
fixes | (min.) o A R
r o T p p
chinook 627 24 445 9.59 68.07 0.#43 0.40 0.032 19.37 0.080 4.847 1.78
chinook 633 19 487 7.57 35.00 0.20§ 0.61 7.64 0.064 7.630 4.80
chinook 876 21 399 13.58 58.91 0.£7% 0.60 0.003 15.94 0.058 5.794 2.85
steelhead 170 24 453 0.87 34.59 0336 -0.026 0.547|| 266.74 | 119.06 0.00p  -3.0¢
steelhead 667 20 529 7.52 57.19 obg1 0.34 18.20 0.157 0.650  -2.24

29T
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Wiener drift model is supported.

With only 5 fish analyzed, it is not possible to determine whether either of the models
is “appropriate”. For the chinook, the Wiener drift model appears to be inadequate, with the
results of the correlation test and the likelihood ratio comparisons indicating that some type
of correlation structure is required to accurately model the data. More analysis is required
to determine if the O-U displacement model is consistent with the chinook’s behavior,
though. For the steelhead, one of the fish’s behavior is consistent with the Wiener process,
as the normality and independence properties are not rejected. Again, more fish will need

to be analyzed to make conclusive statements.

It should be emphasized that the results are dependent on time scale. In this case, the
average time increment is approximately 20 minutes. At a shorter time scale, correlation
may be important for the steelhead, and at a longer time scale, the correlation may cease to

be important for the chinook.

discussion

Although | have not encountered any studies that have applied the O-U process to the
movements of individuals, it appears to have promise. The conditional distribution of the
displacement of an individual given the last time period’s displacement is easily

formulated. Also, the theory can accommodate unequal time intervals.

There are two features of the O-U process that are consistent with the behavior of
migrating juvenile salmon. The first feature of the O-U process is that if a particle is moving
with a certain velocity, there is a tendency to remain at that velocity in the short run. This
feature is very appropriate for dispersing organisms. Another feature of the O-U process is
that there is a tendency to bring particles back to their mean velocity — the further a

particle’s velocity is from the mean velocity, the greater the tendency. This is also a
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desirable property. Migrating juvenile salmon appear to undergo a relatively passive
migration process (Smith, 1982), expending little energy as they are carried downstream
with the current. There are reasons, however, for individuals to move out of this “low

energy” state (e.g, predator avoidance, feeding behavior) and actively move in either the
upstream or downstream direction. Because of the swimming energetics of juvenile
salmon, the fish cannot maintain this energy expenditure for an extended period of time
before they must return to the “low energy” state and replenish their oxygen debt (Brett,

1965). This is reminiscent of the O-U process.

While it is improbable that migrating salmon are strict adherents to the O-U process,
there does seem to be some value in applying the model. On the time scale of days and
kilometers, the Wiener process with drift is a useful model of migrating juveniles and is
being used to predict their arrival times at dams (chapter 4). Looking at migratory process
on the time scale of hours and meters is a valuable exercise because it can lend validity to

the migration model at the longer time scales.



8. Vertical distribution models

8.1. Introduction

Modeling the distribution of organisms in heterogeneous environments is a difficult
problem that has received considerable attention (see Levin (1976) and Okubo (1980) for
reviews). The difficulty lies in formulating a model, measuring the proper environmental
conditions, and determining the organism’s response to the environment. In natural
populations, the problem is even more difficult because the environment is often patchy and
observed distributions of animals are usually the result of a variety of behaviors, some of

which are independent of environmental conditions.

Several types of models have been formulated to describe distributions of populations
in response to environmental stimuli. Clark and Levy (1988) use dynamic programming to
model the vertical distribution of sockeye salmon in Lake Babine, British Columbia. In
their model the vertical position of an individual is determined by a trade-off between
feeding and predator avoidance. Another approach is to model dispersal as a diffusion
process with the diffusion parameter a function of some environmental stimulus (Skellam,
1973; Okubo, 1986). Dobzhansky, et al. (1979) used this approach to model the dispersal
of fruit flies in a heterogeneous habitat. The chemotaxis model originally developed by
Keller and Segel (1971) has received many applications to cellular systems. In this model,
a component of organism movement is based on random dispersal, and a component is
based on movements dictated by some environmental gradient. There have been few
applications of this model to “higher” organisms, possibly because of the difficulty in
modeling the organism’s response to the gradient. Kareiva and Odell (1987) present one of

the few examples, with the distribution of predators (lady bugs) influenced by a gradient of
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prey (aphids) density.

In this chapter, | apply a chemotaxis type model to the vertical distribution of juvenile
salmonids entering the forebay of a dam. The distribution of fish entering the forebay has
direct consequences on their passage route through the dam. The main downstream passage
routes through dams are the spillway, the turbines, and the fish bypass system; each of these
routes has a different mortality rate. The vertical position of a fish is particularly important
in determining whether it will pass through the bypass system (higher in the water column)
or the turbines (lower in the water column); obviously the bypass system is a more

favorable route.

The vertical distribution of fish in the water column can be observed with
hydroacoustics (Dawson, et al., 1984a, 1984b). Figure 8.1 shows data for both daytime and
nighttime distributions of juvenile salmonids entering the forebay of Lower Monumental
Dam in April and May, 1985 (Johnson, et al., 1985). Each plot represents composite
distributions over a 5 day period. Some observations from these data are: 1) clear
differences exist between daytime and nighttime distributions, indicating that
environmental cues may be important; 2) there appears to be consistency in the
distributions through time, indicating that there are potential trends to be modeled; and 3)
the distributions have quite a bit of spread, indicating that a random dispersal element may
be important. One drawback of this type of data is that different stocks or species cannot be
distinguished. There appear to be two types of fish in the daytime data — one residing lower
in the water column and one residing higher in the column that becomes more prevalent
later in the season. The two main groups of juvenile salmonids passing Lower Monumental
Dam during this time of year are steelhead and spring chinook. A study by Smith (1974) in
the forebay of Lower Monumental Dam showed that during the daytime, steelhead tend to

be surface oriented, and chinook tend to migrate lower in the water column. In some cases,
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Figure 8.1 Plots of the vertical distribution of juvenile salmonids in the forebay of Lower
Monumental Dam. The fish are lumped into two feet intervals. The top plots are for daytime
distributions, and the bottom plots are for nighttime distributions.
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it will be possible to compare hydroacoustic data to dam passage counts that distinguish

among species.

Two gradients that may be affecting the vertical distributions are light and pressure.
Both of these gradients are measurable and are somewhat smooth, making the system

amenable to modeling.

8.2. The model

The population dynamics of a group of organisms can be expressed as:
%n(x, t) = —divJ(x, ) (8.1)

where n(x,t) is the population density and(x, t) is the flux. Note that the spatial
component,x, can be multi-dimensional. If we consider simple diffusion along an

environmental gradient, the population flux can be expressed as

J(x, 1) = —OAn(x, t) = n(x, t)0U(x) (8.2)

whereU(x) is the environmental potential function (Teramato and Seno, 1988). In the one

dimensional case, equation (8.2) can be written as

on an . a U

= A+ = .

ot - Mo Tax"ox 0 (8:3)
The first term on the right side is the diffusion term, Witthetermining the magnitude of
the diffusion relative to the second term. The second term introduces an advection that is
dictated by the gradient of the environmental potential function. Next assume that the fish
reach some stationary distribution during the daytime and nighttime periods. To find a

steady-state solution, set

J(x 1) =0, (8.4)
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or equivalently,

6n+ ou _

A5y Hns- = 0. (8.5)

At the steady-state there is no longer time dependence, so we can rewrite equation (8.5) in

terms of ordinary differential equations:

dn+ du _

Assuming thatJ(x) is provided, we can solve for

1
—Tu
n(x) = ce A 8.7)

where c is a constant of integration.

The problem comes in determiniklfx). First assume that there is some measurable

environmental stimulug(x), and thatJ(x) is a function of this; that is:

U(x) = f(E(X)) . (8.8)
| also assume that there is a desirable level of the stinills, , and the advective term of

the chemotaxis equation is toward this desirable level:

U(x) = fIEH-E(X)) . (8.9)

8.3. Example — light gradient

An equation for the decay of light in a water column is

1(z) = 1,672, (8.10)

wherez is depth]g is the light intensity at the surface, amds the decay coefficient. This

function is plotted in Figure 8.2. Now assume that there is a desirable light lével, . The
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Figure 8.2Plots of the important components of equations (8.10) - (8.13). For these plots, | used the
following valuesig = 4.0;a = 0.05;1* = 1.47;A = 3.0;X = 1.0.

environmental potential function can then be expressed as:

U(2) = f(I1B-12)]) . (8.11)

As stated above, the difficulty lies in finding the appropriate funétiédplot of || U—1 (z)]
versusz (Figure 8.2) reveals an abrupt change in the slope of the cuve at . This carries
through to modeled distribution of fish(z), and this abrupt change in distribution is not

observed in the data. A simple modification that produces a smooth curve is

f10-1@))) = xH-1(2))? . (8.12)
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This is plotted in Figure 8.2. In this equation | introduce a congtémit determines the
intensity of the chemotactic response and is often termed the chemotactic coefficient. The

steady state distribution of organisms along a light gradient is then

n(z) = c[bxpg—;\—((lﬂ—l(z))zg , (8.13)
which is also plotted in Figure 8.2.

The squared term in equation (8.12) might be justified because the light gradient
experienced by the fish is not simple. As a fish looks upwards or downwards, it is not
experiencing the local gradient but an integration of light levels above or below based on
its “line of sight” (Pitcher, 1986); this has the effect of intensifying the gradient. Obviously
direct studies would be necessary to justify this term (or some other form), but in the mean

time, it produces a tractable model that is consistent with the data.

8.4. Application to data

As an example, | apply the light gradient based vertical distribution model (equation
(8.13)) to the daytime distribution of the fish at Lower Monumental Dam (top plots of
Figure 8.1). | assume that two distinct types of fish passed the dam, so | introduce a
weighting factorw, to separate the two groups. Also, | assume that each group has distinct

values forA, x, andl*. The parameters describing light intensétyandl, are common to

the two groups. Thus, the equation describing the vertical distribution of fish approaching

the dam is
_ X1 o0
n(z) = wlk, [ex —X—(Ilﬂ—l(z)) 0
1

+(1-w) [k, (kX —;\(—i(lzﬂ—l(z))zg : (8.14)
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The data are reported as the number of fish observed in 2 feet intervals (total depth - 133

ft). To accommodate the discrete form of the data, equation (8.14) must be integrated:

n = Nﬁf%«adz. (8.15)

N is the total number of fish observed, ands the number of fish observed in title
vertical interval. | evaluated this integral numerically using Romberg integration (Press, et

al. 1988).

To fit the model to the data, | use the following procedure. First, since the preferred
depth,z* (corresponding to the preferred light intensity, is the mode of the distribution,
| selecte values & for the two groups based on the two local maxima of fish frequencies
from the data. Also, I do not have information about the light intensity, which would have
to be measured directly, or decay rate, which depends on factors such as turbidity. Since
initial light intensity, 1, can be factored out from the inner term of the exponential, and
since the two parametexsandA occur as a ratio, | define a new parametewhich is

defined as

7 = |g[§, (8.16)

This parameter is the ratio of chemotactic movement to diffusive movement scaled by
initial light intensity. Thus, | need to estimate 4 paramefgr€s, o, andw. | estimate these
parameters with the maximum likelihood method based on a multinomial distribution (see
Chapter 3). The maximum likelihood is determined numerically with the downhill simplex

method (Press, et al., 1988).

| first apply the model to the composite data from the seven periods (April 22 - May 31)
and estimated the parameters. | then use all these parameter estimates ardegpply

the model to the weekly data. To fit these data, | only watiie weighting function that
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distinguishes between the groups of fish.

results

Table 8.1 contains values of the parameter estimates, and Figure 8.3. contains a plot of

Table 8.1 Parameter estimates for equation (8.14) applied to daytime hydroacoustic
data from Lower Monumental Dam for the composite data.

z*, z* (4 (5 a w lik.

13.0 39.0 118.30 18.46 0.022 0.14|6 3.940

the model versus the data for the composite data. The correspondence between the data and
the fitted model is excellent. Table 8.1 shows that the two groups have quite different
preferred depths, 14 feet versus 40 feet, with approximately 15 per cent of the fish in the
first group. Also, there is a large difference between the estimafdsrmthe two groups.

This indicates that relative to each other, the second group undergoes a great deal more

random movement, and the first group’s position is more dictated by the light intensity.

For the weekly data, the estimateswodind likelihoods are contained in Table 8.2 and
plots of the model versus the data are in Figure 8.3. For all but the first week, the model and
data are quite consistent. The valuesv@an be compared to observed passage timing of
steelhead and yearling chinook on the Snake River (Fish Passage Center, 1987). Steelhead
passage was shifted 10-15 days later than yearling chinook passage, which is consistent

with an increasing portion of the higher swimming fish as the season progressed.

These results indicate that vertical distributions are quite constant through the season.

Also, hydroacoustic data may be useful in distinguishing among species of salmonids.
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Figure 8.3 The vertical distribution model (equation (8.14)) with the parameters contained in Table
8.1 compared to the composite daytime distribution of juvenile salmonids at Lower Monumental Dam
(points).
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Table 8.2 Estimates of the
weekly proportion of the two groups
of salmonids at Lower Monumental
Dam and likelihoods based on
equation (8.14).

week # w lik.
1 0.99 3.959
2 0.93 3.961
3 0.76 3.824
4 0.92 3.869
5 0.73 3.822
6 0.66 3.886
7 0.70 3.981

8.5. Discussion

This chapter contains a preliminary presentation of a vertical distribution model and an
initial application to data. The model, with a few simple assumptions, is remarkably
consistent with data from Lower Monumental Dam. In order to apply the model, more
studies are required. Ideally, the reaction of juvenile salmonids to a light gradient will be
better understood to strengthen the model. Also, it would be beneficial to conduct
controlled experiments where the physical features are characterized leaving just the

behavioral parameter to be estimated.



Figure 8.4 The vertical distribution model (equation (8.14)) with the parameters contained in Table 8.1 (but with the p#ameter
obtained from Table 8.2) compared to the daytime distribution of juvenile salmonids at Lower Monumental Dam (points) grbasigeekl
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9. Summary

9.1. Owerview

This thesis contains models that describe spatial and temporal distributions of migrating
juvenile salmonids and applications of the models to data. In developing and applying these
models, | had several objectives. The first objective was to present models that may be of
practical use as management tools. Understanding population dynamics and determining
which behavioral factors are important in shaping these dynamics is crucial in the efforts to
restore salmonid populations in the Columbia River system. The second objective was to
develop statistical methods to compare the models to data. These methods are required to
estimate parameters, assess whether the models are consistent with observations, and to
determine which features should be included or excluded. The third objective was to
provide examples of the data analysis methods to illustrate the type of information that can
be obtained. Also, this will initiate the assessment process for these models and provide

parameter estimates for future applications.

9.2. Summary by chapter

The first chapter introduces some of the problems afflicting salmonid populations in the
Columbia River system and discusses how modeling efforts can contribute to alleviating
some of the problems. It also presents an overview of salmonid life history and a brief

review of juvenile salmonid behavior.

Chapter 2 discusses models of dispersing animals. Models based on an advection-
diffusion equation are applicable to migrating populations. The advection term determines
the directed movement of the population, and the diffusion term describes the spreading of

the population. The diffusion term can be modified to reflect features such as spatial
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heterogeneity and density dependence. Waiting time models, which determine the time
until an event, also capture certain features of dispersing populations such as survival and

migrational delay.

The third chapter contains the statistical methods used in comparing models to data.
The primary parameter estimation method | use is maximum likelihood, which can be
employed analytically or numerically. Goodness-of-fit methods differ depending on
whether the data are continuous or discrete and whether parameters are being estimated. |
use goodness-of-fit tests based on the chi-square distribution and on the empirical density
function. It is often useful to discriminate among alternative models of varying complexity.

| present several methods to do this, all based on comparing likelihoods.

The fourth chapter develops a two parameter model of the travel time of fish through a
reservoir based on an advection-diffusion equation. One parameter determines the
downstream migration rate and one determines the rate of population spread. The model
accommodates discrete or continuous time data, and | apply it to several data sets of both
types. The model successfully describes travel time distributions of run-of-the-river spring

chinook, but describing steelhead and fall chinook is more problematic.

The fifth chapter expands the travel time model to incorporate more complex behavior.
Travel time dependent mortality is modelled with a constant hazard rate. This type of
mortality does not have much effect on the shape of the travel time distribution, and the data
analysis bears this out. Next, a delay term based on a Poisson process is incorporated into
the travel time model. Migrational delay can occur as fish hold up before passing a dam or
before migration is initiated. Several radio-tracking studies confirm that dam delay occurs
for chinook, but this delay is not detectable for Snake River run-of-the-river spring chinook
travel time data. The delay term improves the model for Snake River steelhead (based on

likelihood ratios), but the results are inconsistent and probably not biologically relevant.
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For mid-Columbia fall chinook, a delay term, interpreted as a delay before the initiation of
migration, substantially improves the travel time model. Finally, | present a hierarchical
sequence of models to describe the variation in migration rates for similar groups of fish
migrating in a river reach. These regression models are based on date of release and average
river flow. A four parameter model, with linear flow relationship and a nonlinear time
relationship, worked best with several groups of run-of-the-river spring chinook. The

results from the regressions were used to predict travel times for an independent data set.

In chapter 6, | allow for population heterogeneity, with migration rates of individuals
related to the factors fish length, date of release, river flow, and river temperature. For the
run-of-the-river spring chinook and steelhead, fish length is not an important factor, but it
is important for mid-Columbia fall chinook. When several factors are applied sequentially
for Snake River fall chinook and mid-Columbia sockeye, date of release, fish length, and
average river flow are all important in determining migration rate, while river temperature

iS not.

In chapter 7, downstream migration is considered in terms of individual movements. |
examine two models, one based on the Wiener process that has independent increments and
one based on the Ornstein-Uhlenbeck process that incorporates correlation among
movements. The models are compared to radio-tracking data, and correlation is determined
to be important at the observed time scale (approximately 20 minutes) for the chinook but

not for the steelhead.

The vertical distribution of fish in a water column is described in terms of a chemotaxis-
type model in chapter 8. In this model, an individual’s position is determined by random
movement and reaction to an environmental gradient. | apply the model with a light
intensity gradient to hydroacoustic data from the forebay of Lower Monumental Dam on

the Snake River. The correspondence between the model and data is excellent.
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9.3. Recommendationsdr salmon population management

The objective of this thesis is to present models of salmon populations that can be used
for management purposes. To this effect, some of the models have been incorporated into
the Columbia River Salmon Passagedel (Anderson, et al., 1993), a system model that
describes the downstream migration of juvenile salmonids. In this section, | discuss my

results in this context and make some recommendations.

The two parameter travel time model (equations (4.7) and (4.8)) is particularly effective
for describing arrival distributions of run-of-the-river, yearling chinook, for which
abundant data exists. The model accommodates both discrete and continuous data and is
easily applied. In continuous form(t), the probability density function for the arrival

times of fish at the downstream collection site, is expressed as

_ 2
g(t) = pE“(L o, 9.1)

wherelL is the length of the river reach. The parameters are intuitive and biologically
meaningfulr is the downstream migration rate, andescribes the rate of spreading of the
population. The model, in its simplest form, does not work as well for steelhead and fall
chinook. Although the model captures the important features of steelhead arrival time
distributions, more modeling efforts are needed to understand the departure of observed

steelhead travel time distributions from model-predicted distributions.

The travel time model is improved for fall chinook by incorporating a delay term, which

corresponds to a delay in the initiation of migration. In its simplest form, this is modeled as

1. The Columbia River Salmon Passage model is being developed at the University of Washington
at the Center for Quantitative Studies in Fisheries, Forestry, and Wildlife and the Fisheries Research
Institute. Information about the model can be obtained from Dr. James J. Anderson, Fisheries
Research Institute.
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an exponential waiting time process. More complexity can be added by relating the
instantaneous departure rate,to time (for example, the fish are more likely to initiate
migration as the season progresses) and covangt@srticularly fish length. The delay
model is then expressed as

a(t, X)dt

d(t) = a(t, X)e_ﬁ) (9.2)

This equation is easy to evaluate if the fornmf X) is not complex.

The delay in front of a dam before fish passage is an important component of
downstream migration. | developed three alternative models to describe this delay process
and applied the models to radio tag data, where exact times of arrival to the forebay and
dam passage are observed. These data show that dam delay can be substantial; one group
of chinook delayed for an average of 20 hours at Lower Granite Dam. The model that works

best to describe these data splits the fish in two groups: those that pass quickly wjth rate
and those that pass slowly with rate This model works substantially better than one with

daytime and nighttime passage rates. Unfortunately, dam delay is difficult to detect with
travel time data and is difficult to observe directly. More work is necessary to determine the

extent of dam delay and how it varies from dam to dam.

Utilizing the travel time model in a predictive manner involves selecting model
parameters priori. | related the observed variation in parameter estimates to the factors
date of release and average river flow in regression equations. | tested several alternative

equations and determined that the following set worked the best to predict valaadof

. 1
fi = B0+{32|:i[1+ex;X—O((t—TO))} ©-3)

and
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G; = Bo+Byfj- (9.4)
In the first equation, migration rate is linearly related to filgyand the term in the brackets
represents a nonlinear relationship with date of release, where migration rate begins at a
lower rate early in the season and increases to an upper level as the season progresses. The
second regression equation linearly relatethe rate of population spread, to migration
rate. These two regression equations were applied to four groups of run-of-the-river
chinook (composed primarily of yearling chinook of both wild and hatchery origins). The
regression equation far had R values ranging from .855 to .945, and the regression
equation foro hadR? values ranging .589 to .845. These regression equations can be used
to determine model parameters based on date of release and river flow. The travel time

model can then be implemented to predict the downstream arrival distributions.

When information on the variability of individuals within a cohort was included in the
travel time model, fish length was determined to be an important factor for mid-Columbia
subyearling chinook but not for Snake River yearling chinook and steelhead. Also, for
sequential releases of Snake River subyearling chinook and Columbia River sockeye, |
determined that fish length, date of release, and average river flow are important factors at
the level of the individual, but river temperature is not. River temperature may be important,
though, in determining the timing of runs on a year to year basis. The importance of fish
length in the fall chinook may be partly due to its relation to the onset of migration, and

incorporating fish length into the delay term can account for this.

The vertical distribution model can benefit future modeling applications. The position
of fish in the water column as they approach the dam is related to their passage route
through the dam — spillway, fish bypass system, or turbines. Since each pathway has a
different associated mortality, utilizing a vertical distribution model to predict passage

routes will be useful in ascribing total passage mortality. The modeling demonstrated that
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observed vertical distributions are predictable and that different species have different
distributions. Future experimental work in this are will help to identify underlying

mechanisms of the vertical distribution process.

Overall conclusions are as follows. First, simple models based on diffusion equations
are quite tractable mathematically and capture many of the features of the distributions of
migrating juvenile salmonids. Statistical techniques, primarily based on likelihood
functions, are readily applied to these models to estimate parameters, assess model
goodness-of-fit, and to compare among alternative models. This combination of modeling
and statistics is a powerful method in establishing models as predictive tools for

management purposes.
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Appendix 1. PIT tag* release groups

Table All PIT tag release group Table A1.1 (Continued) PIT tag release
information. The table includes releaseyroup information. The table includes

group  information,  release  grouprelease group information, release group
identification code, number of individuals jgentification code, number of individuals

observed at Lower Granite Dam (GRJ)gbserved at Lower Granite Dam (GRJ),
and the cohort number assigned to th@nd the cohort number assigned to the

group. group.

specieschinook run type unkown specieschinook run type unkown

rearing type unkown release siteSnake trap rearing type unkown release siteSnake trap
Release Group RS';‘;SG ztonli\g 00:;0” Release Group Release | # obs'd | cohort

Date at GRJ #
1989 EWB89113.SNK 04/23/89 69 27

EWB89083.SNK 03/24/89 48 1 EWB89114.SNK 04/24/89 61 28
EWB89086.SNK 03/27/89 61 2 EWB89115.SNK 04/25/89 70 29
EWB89087.SNK 03/28/89 57 s EWB89116.SNK 04/26/89 66 30
EWB89088.SNK 03/29/89 5 4 EWB89117.SNK 04/27/89 66 31
EWB89089.SNK 03/30/89 45 5 EWB89118.SNK 04/28/89 37 32
EWB89090.SNK 03/31/89 57 6 EWBB9119 SNK 04129789 32
EWB89091.SNK 04/01/89 54 7 EWBB9120 SNK 04/30/89 15
EWB89092.SNK 04/02/89 57 8 EWBB912LENK 05/01/89 5] 33
EWB89093.SNK 04/03/89 47 9 EWBB9122.SNK 05/02/89 8
EWB89094.SNK 04/04/89 52 10 EWB89129.SNK 05/09/89 64 34
EWB89095.SNK 04/05/89 45 11 CWBB9130 SNK 05710789 62 35
EWBB89096.SNK 04/06/89 33 EWB89131.SNK 05/11/89 65 36
EWB89097.SNK 04/07/89 43 12 EWB89132.SNK 05/12/89 61 37
EWB89098.SNK 04/08/89 4 EWB89133.SNK 05/13/89 84 38
EWB89099.SNK 04/09/89 54 13 1990
EWB89100.SNK 04/10/89 43 14
EWB89101.SNK 04/11/89 55 15 EWB90099.SNK 04/09/90 37 1
EWB89102.SNK 04/12/89 48 16 EWB90100.SNK 04/10/90 22
EWB89103.SNK 04/13/89 53 17 EWB90107.PS 04/17/90 60 2
EWB89104.SNK 04/14/89 66 18 EWB90107.SNK 04/17/90 13 3
EWB89105.SNK 04/15/89 51 19 EWB90108.5NK 04/18/90 39
EWB89106.SNK 04/16/89 68 20 EWB90109.5NK 04/19/90 54 4
EWB89107.SNK 04/17/89 64 21 EWB90110.5NK 04/20/90 59 5
EWB89108.SNK 04/18/89 66 22 EWB90111.SNK 04/21/90 59 6
EWB89109.SNK 04/19/89 63 23 EWB90112.SNK 04/22/90 66 7
EWB89110.SNK 04/20/89 59 24
EWB89111.SNK 04/21/89 62 25 1. These data were obtained from the Fish
EWB89112.SNK 04/22/89 60 26 Passage Center, Portland, Oregon.
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Table A1l.1 (Continued) PIT tag release Table Al1.1 (Continued) PIT tag release
group information. The table includesgroup information. The table includes
release group information, release groupelease group information, release group
identification code, number of individuals identification code, number of individuals
observed at Lower Granite Dam (GRJ)observed at Lower Granite Dam (GRJ),
and the cohort number assigned to thand the cohort number assigned to the

group. group.
specieschinook run type unkown specieschinook run type unkown
rearing type unkown release siteSnake trap rearing type unkown release siteSnake trap
Release Group Release | # obs’d | cohort Release Group Release | # obs'd | cohort
Date at GRJ # Date at GRJ #
EWB90113.SNK 04/23/90 62 8 EWB91120.PS 04/30/91 39
EWB90114.SNK 04/24/90 70 9 EWB91120.SNK 04/30/91 7 15
EWB90115.SNK 04/25/90 36 10 EWB91121.SNK 05/01/91
EWB90116.SNK 04/26/90 44 EWB91130.SNK 05/10/91 63 16
EWB90117.SNK 04/27/90 16 EWB91131.SNK 05/11/91 28
EWB90118.SNK 04/28/90 12 11 EWB91132.SNK 05/12/91 11 17
EWB90119.SNK 04/29/90 24 EWB91133.SNO 05/12/91 14
EWB90120.SNK 04/30/90 14 1992
EWB90121.SNK 05/01/90 22 12 EWB92098.PS 04/07/92 26
EWB90122.SNK 05/02/90 5 EWB92099.PS 04/08/92 28
EWB90127.SNK 05/07/90 14 EWB92105.FSN 04/14/92 6
EWB90128.SNK 05/08/90 18 13 EWB92105.SNK 04/14/92 31
EWB90129.SNK 05/09/90 22 EWB92111.SNK 04/20/92 6
1991 EWB92112.SNK 04/21/92 17 4
EWB91098.PS 04/08/91 36 1 EWB92113.SNK 04/22/92 15
EWB91098.SNK 04/08/91 19 EWB92114.SNK 04/23/92 16
EWB91099.SNK 04/09/91 42 2 EWB92115.SNK 04/24/92 6 5
EWB91100.SNK 04/10/91 63 3 EWB92116.SNK 04/25/92
EWB91102.FSN 04/12/91 21 EWB92122.SNK 05/01/92 15 6
EWB91102.PS 04/12/91 41 4 EWB92123.SNK 05/02/92 19
EWB91102.SNK 04/12/91 22
EWB91105.PS 04/15/91 69 5
EWB91107.PS 04/17/91 66 6
EWB91108.PS 04/18/91 47 7
EWB91109.PS 04/19/91 55 8
EWB91112.PS 04/22/91 65 9
EWB91113.PS 04/23/91 62 10
EWB91115.PS 04/25/91 54 11
EWB91115.SNK 04/25/91 36
EWB91116.SNK 04/26/91 63 12
EWB91117.SNK 04/27/91 81 13
EWB91119.PS 04/29/91 32 14
EWB91119.SNK 04/29/91 21
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Table Al.2 PIT tag release group

Table Al1.2 (Continued) PIT tag release
group information. The table includes
release group information, release group

information. The table includes releasgqentification code, number of individuals

group information, release  group
identification code, number of individuals

observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the

observed at Lower Granite Dam (GRJ)group.

and the cohort number assigned to th

group. specieschinook run type unkown
rearing type wild release siteSnaketrap
specieschinook run type unkown
rearing type wild release siteSnaketrap Release | # obs'd | group
Release Group
Date at GRJ #
Release Group Rg'(;ise itogg g‘ gr(;up EWB93129.SNK 05/09/93 12 25
EWB93130.SNK 05/10/93 23
1993 EWB93131.SNK 05/11/93 15 26
EWB93099.SNK 04/09/93 3 1 EWB93132.SNK 05/12/93 16
EWB93100.SNK 04/10/93 26 2 EWB93133.SN2 05/13/93 1
EWB93101.SNK 04/11/93 11 3 EWB93133.SNK 05/13/93 16 27
EWB93102.SNK 04/12/93 14 4 EWB93134.SNK 05/14/93 11
EWB93103.SNK 04/13/93 12 5
EWB93104.SNK 04/14/93 4
EWB93105.SNK 04/15/93 8
EWB93106.SNK 04/16/93 3 6 Table A1.3 PIT tag release group
EWB93107.SNK 04/17/93 2 information. The table includes release
EWB93108.SNK 04/18/93 3 group information, release  group
EWB93109.SNK 04/19/93 3 ! identification code, number of individuals
EWB93110.SNK 04/20/93 6 observed at Lower Granite Dam (GRJ),
EWB9S111.SNK | 04/21/93 4 and the cohort number assigned to the
EWB93112.SNK 04/22/93 8 group.
EWB93113.SNK 04/23/93 5 10
EWB93114.SNK 04/24/93 4 specieschinook run type unk.
EWB93115.SNK 04/25/93 6 11 rearing type hatchery release sitesnake trap
EWB93116.SNK 04/26/93 4 12
EWB93117.SNK 04/27/93 19 13 Release | # obs'd | group
EWB93118.SNK 04/28/93 6 14 Release Group Date at GRJ #
EWB93119.SNK 04/29/93 13 15 7900
EWB93120.SNK 04/30/93 10 16 EWB92093.PS 04/07/92 2
EWB93121.SNK 05/01/93 7 17 EWB92099. PS 04/08/92 29
EWB93122.5NK 05/02/93 18 EWB02105.FSN 04/14192 14
EWB93123.SNK 05/03/93 11 19 EWB92105.SNK 04114192 33
EWB93124.SNK 05/04/93 29 20 EWB92111.SNK 04/20/92 2
EWB93125.SNK 05/05/93 33 21 EWB92112.SNK 0412192 7 4
EWB93126.SNK 05/06/93 30 22 EWB92113.SNK 04/22/92 3
EWB93127.SNK 05/07/93 30 23 EWB92114.SNK 04/23/92 6
EWB93128.SNK 05/08/93 28 24 EWB92115.SNK 04724192 2 5
EWB92116.SNK 04/25/92 6
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Table A1.3 (Continued) PIT tag release Table A1.3 (Continued) PIT tag release
group information. The table includesgroup information. The table includes
release group information, release groupelease group information, release group
identification code, number of individuals identification code, number of individuals
observed at Lower Granite Dam (GRJ)observed at Lower Granite Dam (GRJ),
and the cohort number assigned to thand the cohort number assigned to the

group. group.
specieschinook run type unk. specieschinook run type unk.
rearing type hatchery release sitesnake trap rearing type hatchery release sitesnake trap
Release | # obs'd | grou Release | # obs’d | grou
Release Group Date at GRJ 9 # P Release Group Date at GRJ 9 4 P
EWB92122.SNK 05/01/92 7 6 EWB93129.SNK 05/09/93 27 25
EWB92123.SNK 05/02/92 5 EWB93130.SNK 05/10/93 34
1993 EWB93131.SNK 05/11/93 21 26
EWB93099.SNK 04/09/93 44 1 EWB93132.SNK 05/12/93 32
EWB93100.SNK 04/10/93 45 2 EWB93133.SNK 05/13/93 30 27
EWB93101.SNK 04/11/93 49 3 EWB93134.SNK 05/14/93 16
EWB93102.SNK 04/12/93 45 4
EWB93103.SNK 04/13/93 19 5
EWB93104.SNK 04/14/93 9
EWB93105 SNK 041593 I Table Al4 PIT tag release group
EWB93106.SNK 04/16/93 8 6 information. The table includes release
EWB93107.SNK 04/17/93 9 group information, release  group
EWB93108.SNK 04/18/93 7 identification code, number of individuals
EWB93109.SNK 04/19/93 17 ! observed at Lower Granite Dam (GRJ),
EWB93110.SNK 04/20/93 23 and the cohort number assigned to the
EWB93111.SNK 04/21/93 39 8 group.
EWB93112.SNK 04/22/93 39
EWB93113.SNK 04/23/93 30 10 specieschinook run type unk.
EWB93114.SNK 04/24/93 43 rearing type unk. release siteClearw. trap
EWB93115.SNK 04/25/93 41 11
EWB93116.SNK 04/26/93 47 12 Release | # obs’d | group
Release Group
EWB93117.SNK 04/27/93 45 13 Date at GRJ #
EWB93118.SNK 04/28/93 37 14 1989
EWB93119.SNK 04/29/93 45 15 EWBS89088.CLW 03/29/89 47 1
EWB93120.SNK 04/30/93 50 16 EWBS89089.CLW 03/30/89 33
EWB93121.SNK 05/01/93 46 17 EWBS89090.CLW 03/31/89 51 2
EWB93122.SNK 05/02/93 48 18 EWBS9091.CLW 04/01/89 39
EWB93123.SNK 05/03/93 45 19 EWBS89092.CLW 04/02/89 40
EWB93124.SNK 05/04/93 69 20 EWB89093.CLW 04/03/89 51
EWB93125.SNK 05/05/93 36 21 EWB89094.CLW 04/04/89 48 5
EWB93126.SNK 05/06/93 42 22 EWBS89095.CLW 04/05/89 43
EWB93127.SNK 05/07/93 49 23 EWBS89096.CLW 04/06/389 33 6
EWB93128.SNK 05/08/93 39 24 EWBS9097.CLW 04/07/89 42
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Table Al.4 (Continued) PIT tag release Table A1.4 (Continued) PIT tag release
group information. The table includesgroup information. The table includes
release group information, release groupelease group information, release group
identification code, number of individuals identification code, number of individuals
observed at Lower Granite Dam (GRJ)observed at Lower Granite Dam (GRJ),
and the cohort number assigned to thand the cohort number assigned to the

group. group.
specieschinook run type unk. specieschinook run type unk.
rearing type unk. release siteClearw. trap rearing type unk. release siteClearw. trap
Release | # obs’d | grou Release | # obs'd | grou
Release Group Date at GRJ 9 # P Release Group Date at GRJ 9 4 P
EWB89102.CLW 04/12/89 23 7 EWB90139.CLW 05/19/90 36 15
EWB89103.CLW 04/13/89 37 EWB90140.CLW 05/20/90 35
EWB89105.CLW 04/15/89 28 8 EWB90141.CLW 05/21/90 58 16
EWB89106.CLW 04/16/89 35 EWB90142.CLW 05/22/90 37 17
EWB89143.CLW 05/23/89 10 9 EWB90143.CLW 05/23/90 46
EWB89144.CLW 05/24/89 39 EWB90144.CLW 05/24/90 61 18
EWB89145.CLW 05/25/89 51 10 1991
EWB89150.CLW 05/30/89 62 11 EWB91093.CLW 04/03/91 39 1
1990 EWB91094.CLW 04/04/91 43
EWB90089.CLW 03/30/90 46 1 EWB91095.CLW 04/05/91 52 2
EWB90090.CLW 03/31/90 51 2 EWB91096.CLW 04/06/91 54 3
EWB90091.CLW 04/01/90 40 3 EWB91097.CLW 04/07/91 58 4
EWB90092.CLW 04/02/90 42 EWB91098.CLW 04/08/91 64 5
EWB90093.CLW 04/03/90 46 4 EWB91099.CLW 04/09/91 50 6
EWB90094.CLW 04/04/90 45 EWB91100.CLW 04/10/91 57 7
EWB90095.CLW 04/05/90 44 5 EWB91101.CLW 04/11/91 62 8
EWB90096.CLW 04/06/90 37 EWB91101.FCL 04/11/91 15 9
EWB90097.CLW 04/09/90 40 6 EWB91102.CLW 04/12/91 47
EWB90098.CLW 04/08/90 48 EWB91102.FCL 04/12/91 14 10
EWB90099.CLW 04/09/90 47 7 EWB91103.CLW 04/13/91 46
EWB90100.CLW 04/10/90 43 EWB91104.CLW 04/14/91 30 11
EWB90101.CLW 04/11/90 42 8 EWB91105.CLW 04/15/91 30
EWB90102.CLW 04/12/90 45 EWB91106.CLW 04/16/91 58 12
EWB90103.CLW 04/13/90 48 9 EWB91107.CLW 04/17/91 51 13
EWB90104.CLW 04/14/90 43 EWB91108.CLW 04/18/91 50 14
EWB90105.CLW 04/15/90 58 10 EWB91109.CLW 04/19/91 60 15
EWB90106.CLW 04/16/90 55 11 EWB91110.CLW 04/20/91 47 16
EWB90107.CLW 04/17/90 29 12 EWB91111.CLW 04/21/91 51 17
EWB90108.CLW 04/18/90 29 EWB91112.CLW 04/22/91 56 18
EWB90122.CLW 05/02/90 23 13 EWB91113.CLW 04/23/91 47 19
EWB90123.CLW 05/03/90 28 EWB91114.CLW 04/24/91 57 20
EWB90137.CLW 05/17/90 30 14 EWB91115.CLW 04/25/91 59 21
EWB90138.CLW 05/18/90 41 EWB91116.CLW 04/26/91 64 22
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Table Al.4 (Continued) PIT tag release Table A1.4 (Continued) PIT tag release
group information. The table includesgroup information. The table includes
release group information, release groupelease group information, release group
identification code, number of individuals identification code, number of individuals
observed at Lower Granite Dam (GRJ)observed at Lower Granite Dam (GRJ),
and the cohort number assigned to thand the cohort number assigned to the

group. group.
specieschinook run type unk. specieschinook run type unk.
rearing type unk. release siteClearw. trap rearing type unk. release siteClearw. trap
Release | # obs’d | grou Release | # obs'd | grou
Release Group Date at GRJ 9 # P Release Group Date at GRJ 9 4 P
EWB91128.CLW 05/08/91 22 23 EWB92109.CLW 04/18/92 14 22
EWB91129.CLW 05/09/91 44 EWB92110.CLW 04/19/92 10
EWB91130.CLW 05/10/91 73 24 EWB92111.CLW 04/20/92 5 23
EWB91131.CLW 05/11/91 69 25 EWB92112.CLW 04/21/92
1992 EWB92113.CLW 04/22/92 8 24
EWB92082.CLW 03/22/92 3 1 EWB92114.CLW 04/23/92 26 25
EWB92083.CLW 03/23/92 3 2 EWB92115.CLW 04/24/92 15 26
EWB92084.CLW 03/24/92 3 3 EWB92116.CLW 04/25/92 10
EWB92085.CLW 03/25/92 6 4 EWB92118.CLW 04/27/92 4 27
EWB92086.CLW 03/26/92 8 EWB92119.CLW 04/28/92
EWB92087.CLW 03/27/92 7 5 EWB92120.CLW 04/29/92 2 28
EWB92088.CLW 03/28/92 5 EWB92121.CLW 04/30/92 7 29
EWB92089.CLW 03/29/92 7 6 EWB92127.CLW 05/06/92 15 30
EWB92090.CLW 03/30/92 7 EWB92139.CLW 05/18/92 6
EWB92091.CLW 03/31/92 8 7 EWB92140.CLW 05/19/92 6 31
EWB92092.CLW 04/01/92 12 EWB92141.CLW 05/20/92 8
EWB92093.CLW 04/02/92 14 8 EWB92145.CLW 05/24/92 7 32
EWB92094.CLW 04/03/92 19 EWB92146.CLW 05/25/92 4
EWB92095.CLW 04/04/92 25 9 EWB92147.CLW 05/26/92 7 33
EWB92096.CLW 04/05/92 22 10 EWB92148.CLW 05/27/92 5
EWB92097.CLW 04/06/92 16 11 EWB92149.CLW 05/28/92 6 34
EWB92098.CLW 04/07/92 17 12 EWB92150.CLW 05/29/92 3
EWB92099.CLW 04/08/92 8 13 EWB92151.CLW 05/30/92 6 35
EWB92100.CLW 04/09/92 23 EWB92152.CLW 05/31/92 3
EWB92101.CLW 04/10/92 11 14
EWB92102.CLW 04/11/92 3 15
EWB92103.CLW 04/12/92 3 16
EWB92104.CLW 04/13/92 2 17
EWB92104.UFW 04/13/92 1
EWB92105.CLW 04/14/92 1 18
EWB92105.FCL 04/14/92 1 19
EWB92106.CLW 04/15/92 5
EWB92107.CLW 04/16/92 40 20
EWB92108.CLW 04/17/92 5 21
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Table Al.5 PIT tag release group Table Al.6 PIT tag release group
information. The table includes releaseinformation. The table includes release
group information, release groupgroup information, release  group
identification code, number of individuals identification code, number of individuals
observed at Lower Granite Dam (GRJ)observed at Lower Granite Dam (GRJ),
and the cohort number assigned to thand the cohort number assigned to the

group. group.
specieschinook run type unknown specieschinook run type unknown
rearing type wild release siteClearw. trap rearing type hatchery release siteClearw. trap
Release | # obsd | grou Release | 4 ohs'd | grou
Release Group Date at GRJ 9 # P Release Group Date at GRJ g # P
1993 1992
EWB93100.CLW 04/10/93 13 1 EWB92082.CLW 03/22/92 53 1
EWB93101.CLW 04/11/93 4 2 EWB92083.CLW 03/23/92 49 2
EWB93102.CLW 04/12/93 3 EWB92084.CLW 03/24/92 45 3
EWB93106.CLW 04/16/93 6 3 EWB92085.CLW 03/25/92 32 4
EWB93110.CLW 04/20/93 14 4 EWB92086.CLW 03/26/92 18
EWB93111.CLW 04/21/93 3 EWB92087.CLW 03/27/92 21 5
EWB93112.CLW 04/22/93 6 5 EWB92088.CLW 03/28/92 19
EWB93113.CLW 04/23/93 1 EWB92089.CLW 03/29/92 33 6
EWB93114.CLW 04/24/93 1 6 EWB92090.CLW 03/30/92 26
EWB93115.CLW 04/25/93 7 EWB92091.CLW 03/31/92 25 7
EWB93116.CLW 04/26/93 12 7 EWB92092.CLW 04/01/92 19
EWB93117.CLW 04/27/93 4 EWB92093.CLW 04/02/92 20 8
EWB93120.CLW 04/30/93 4 EWB92094.CLW 04/03/92 33
EWB93121.CLW 05/01/93 12 8 EWB92095.CLW 04/04/92 35 9
EWB93122.CLW 05/02/93 4 EWB92096.CLW 04/05/92 35 10
EWB92097.CLW 04/06/92 34 11
EWB92098.CLW 04/07/92 36 12
EWB92099.CLW 04/08/92 41 13
EWB92100.CLW 04/09/92 18
EWB92101.CLW 04/10/92 47 14
EWB92102.CLW 04/11/92 49 15
EWB92103.CLW 04/12/92 47 16
EWB92104.CLW 04/13/92 37 17
EWB92104.UFW 04/13/92 13
EWB92105.CLW 04/14/92 58 18
EWB92105.FCL 04/14/92 11 19
EWB92106.CLW 04/15/92 40
EWB92107.CLW 04/16/92 5 20
EWB92108.CLW 04/17/92 46 21
EWB92109.CLW 04/18/92 35 22
EWB92110.CLW 04/19/92 38
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Table A1.6 (Continued) PIT tag release Table A1.6 (Continued) PIT tag release
group information. The table includesgroup information. The table includes
release group information, release groupelease group information, release group
identification code, number of individuals identification code, number of individuals
observed at Lower Granite Dam (GRJ)observed at Lower Granite Dam (GRJ),
and the cohort number assigned to thand the cohort number assigned to the

group. group.

specieschinook run type unknown specieschinook run type unknown

rearing type hatchery release siteClearw. trap rearing type hatchery release siteClearw. trap

Release ) Release ,
Release Group Date iftoé);g gr(;up Release Group Date ztoé);? gr(;up
EWB92111.CLW 04/20/92 41 23 EWB93116.CLW 04/26/93 34 7
EWB92112.CLW 04/21/92 41 EWB93117.CLW 04/27/93 24
EWB92113.CLW 04/22/92 48 24 EWB93120.CLW 04/30/93 23
EWB92114.CLW 04/23/92 30 25 EWB93121.CLW 05/01/93 18 8
EWB92115.CLW 04/24/92 25 26 EWB93122.CLW 05/02/93 10
EWB92116.CLW 04/25/92 9
EWB92118.CLW 04127192 5 27
EWB92119.CLW 04/28/92 46
EWB92120.CLW 04129/92 20 28 Table Al.7 PIT tag release group
EWB92121.CLW 04/30/92 29 29 information. The table includes release
EWB92127.CLW 05/06/92 35 30 group information, release group
EWB92139.CLW 05/18/92 7 identification code, number of individuals
EWB92140.CLW | 05/19/92 16 | 381 observed at McNary Dam (MCJ), and the
EWB92141.CLW 05/20/92 15 cohort number assigned to the group.
EWB92145.CLW 05/25/92 25 32
EWB92146.CLW 05/25/92 12 specieschinook  run type fall
EWB92147 CLW 05/26/92 27 33 rearing typewild release siteMid Colum.
EWB92148.CLW 05/27/92 21
EWB92149.CLW 05/28/92 32 34 Release Group Release | # obs’d | group
EWB92150.CLW 05/29/92 16 Date | atMCJ #
EWB92151.CLW 05/30/92 36 35 1991
EWB92152.CLW 05/31/92 11 LRB91157.CO2 06/07/91 154
1993 LRB91158.CO1 06/07/91 97 2
EWB93100.CLW 04/10/93 43 1 1992
EWB93101.CLW 04/11/93 35 2 LRB92155.001 06/03/92 39 1
EWB93102.CLW 04/12/93 25 LRB92155.002 06/03/92 36
EWB93106.CLW 04/16/93 44 3 LRB92155.003 06/03/92 73
EWB93110.CLW 04/20/93 36 4 LRB92156.002 06/04/92 14
EWB93111.CLW 04/21/93 33 LRB92156.003 06/04/92 54
EWB93112.CLW 04/22/93 29 5 LRB92156.001 06/04/92 23 4
EWB93113.CLW 04/23/93 31 LRB92156.004 06/04/92 40
EWB93114.CLW 04/24/93 34 6 LRB92156.005 06/04/92 60 5
EWB93115.CLW 04/25/93 20 1993
LRB93158.001 06/07/93 61 1
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Table A1.7 (Continued) PIT tag release Table A1.8 (Continued) PIT tag release
group information. The table includes group information. The table includes
release group information, release grouprelease group information, release group
identification code, number of individuals identification code, number of individuals
observed at McNary Dam (MCJ), and theobserved at Lower Granite Dam (GRJ),
cohort number assigned to the group. and the cohort number assigned to the

. . group.
specieschinook  run type fall

rearing type wild release siteMid Colum. specieschinook  run type fall
rearing typewild release siteSnake River

Release | # obs'd | group
Release Group
Date | at MCJ # Release | # obsd
Release Group
LRB93159.001 06/08/93 81 2 Date at GRJ
LRB93159.002 06/08/93 115 3 WPC91164.G26 06/13/91 2
LRB93160.001 06/09/93 75 4 WPC91164.G29 06/13/91 0
LRB93160.002 06/09/93 118 5 WPC91169.G32 06/18/91 0
LRB93160.003 06/15/93 120 6 WPC91169.G42 06/18/91 2
WPC91170.G26 06/19/91 1
WPC91170.G29 06/19/91 0
WPC91175.G26 06/24/91 1
Table A1.8 PIT tag .release group —wecoiiis.caz 05/22/01 >
information. The table includes release—rcori7e.6a2 06/25/91 5
group information, release group 1992
identification code, number of individuals [wpco2113.G48 04/23/92 1
observed at Lower Granite Dam (GRJ),[ wpce2119.229 04/29/92 0
and the cohort number assigned to the wpco2119.248 04/29/92 0
group. WPC92119.B51 04/29/92 1
WPC92120.G48 04/30/92 3
specieschinook  run type fall WPC92120.G62 04/30/92 1
rearing typewild release siteSnake River WPC92134.232 05/14/92 0
WPC92134.254 05/13/92 1
Release Group Release | # obs"d WPC92134.262 05/13/92 1
Date at GRJ WPC92135.274 05/14/92 0
1991 WPC92135.280 05/14/92 0
WPC91149.R17 05/29/91 1 WPC92135.282 05/14/92 2
WPC91150.G29 05/30/91 3 WPC92140.280 05/19/92 0
WPC91150.R16 05/30/91 1 WPC92140.282 05/19/92 2
WPC91150.R17 05/30/91 0 WPC92141.229 05/20/92 1
WPC91155.G35 06/04/91 2 WPC92141.248 05/20/92 2
WPC91155.G38 06/04/91 0 WPC92141.A42 05/20/92 1
WPC91157.G29 06/06/91 1 WPC92141.B42 05/20/92 1
WPC91157.G42 06/06/91 2 WPC92142.B51 05/21/92 2
WPC91162.G29 06/11/91 1 WPC92147.A51 05/26/92 2
WPC91162.G42 06/11/91 3 WPC92148.282 05/27/92 3
WPC91162.G50 06/11/91 1 WPC92148.290 05/27/92 0
WPC91163.G26 06/12/91 2 WPC92148.G62 05/27/92 5
WPC91163.G35 06/12/91 1 WPC92148.G74 05/27/92 0




207

Table A1.8 (Continued) PIT tag release Table A1.8 (Continued) PIT tag release
group information. The table includes group information. The table includes
release group information, release grouprelease group information, release group
identification code, number of individuals identification code, number of individuals
observed at Lower Granite Dam (GRJ),observed at Lower Granite Dam (GRJ),
and the cohort number assigned to theand the cohort number assigned to the

group. group.
specieschinook  run type fall specieschinook  run type fall

rearing typewild release siteSnake River rearing typewild release siteSnake River

Release Group Release # obs"d Release Group Release | # obs"d
Date at GRJ Date at GRJ

WPC92148.G90 05/27/92 0 WPC93153.232 06/02/93 4
WPC92149.A42 05/28/92 1 WPC93153.A51 06/02/93 1
WPC92149.B42 05/28/92 2 WPC93153.B42 06/02/93 2
WPC92153.G62 06/01/92 3 WPC93153.G33 06/02/93 1
WPC92154.232 06/02/92 0 WPC93153.G37 06/02/93 1
WPC92154.B42 06/02/92 1 WPC93153.G41 06/02/93 1
WPC92154.G50 06/02/92 3 WPC93153.R03 06/02/93 3
WPC92156.A51 06/04/92 1 WPC93153.R14 06/02/93 2
1993 WPC93154.254 06/03/93 1
WPC93138.G61 05/18/93 3 WPC93154.R76 06/03/93 1
WPC93139.229 05/19/93 3 WPC93155.G27 06/04/93 1
WPC93139.B42 05/19/93 2 WPC93155.G30 06/04/93 1
WPC93139.G29 05/19/93 1 WPC93155.G31 06/04/93 1
WPC93139.G47 05/19/93 3 WPC93155.R53 06/04/93 0
WPC93139.G51 05/19/93 1 WPC93159.E34 06/08/93 1
WPC93144.226 05/25/93 1 WPC93159.E37 06/08/93 0
WPC93144.229 05/25/93 3 WPC93159.E41 06/08/93 1
WPC93144.G29 05/25/93 5 WPC93159.E43 06/08/93 3
WPC93144.G34 05/25/93 7 WPC93159.W34 06/08/93 6
WPC93145.A51 05/25/93 1 WPC93159.W35 06/08/93 1
WPC93145.B42 05/25/93 1 WPC93159.W37 06/08/93 1
WPC93146.G58 05/26/93 1 WPC93159.W41 06/08/93 9
WPC93146.G63 05/26/93 0 WPC93159.W42 06/08/93 10
WPC93146.R11 05/26/93 2 WPC93159.W44 06/08/93 1
WPC93147.G28 05/27/93 4 WPC93159.W47 06/08/93 2
WPC93147.G29 05/27/93 2 WPC93159.W50 06/08/93 1
WPC93147.G34 05/26/93 5 WPC93160.226 06/09/93 3
WPC93147.G37 05/27/93 1 WPC93160.229 06/09/93 3
WPC93147.G47 05/27/93 1 WPC93160.A51 06/09/93 3
WPC93147.G53 05/27/93 2 WPC93160.B42 06/09/93 1
WPC93152.G29 06/01/93 10 WPC93160.G32 06/09/93 1
WPC93152.G34 06/01/93 4 WPC93160.R08 06/09/93 1
WPC93153.226 06/02/93 4 WPC93160.R13 06/09/93 1
WPC93153.229 06/02/93 0 WPC93160.R19 06/09/93 2
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Table A1.8 (Continued) PIT tag release Table A1.8 (Continued) PIT tag release
group information. The table includes group information. The table includes
release group information, release grouprelease group information, release group
identification code, number of individuals identification code, number of individuals
observed at Lower Granite Dam (GRJ),observed at Lower Granite Dam (GRJ),
and the cohort number assigned to theand the cohort number assigned to the

group. group.

specieschinook  run type fall specieschinook  run type fall

rearing typewild release siteSnake River rearing typewild release siteSnake River
Release Group Release # obs"d Release Group Release | # obs"d

Date at GRJ Date at GRJ
WPC93160.R92 06/09/93 2 WPC93175.W34 06/24/93 3
WPC93161.G58 06/10/93 2 WPC93175.W35 06/24/93 2
WPC93161.R63 06/10/93 0 WPC93175.W53 06/24/93 1
WPC93162.E29 06/11/93 13 WPC93175.W54 06/24/93 1
WPC93162.W24 06/11/93 4 WPC93180.A42 06/29/93 1
WPC93166.E61 06/15/93 2 WPC93180.A51 06/29/93 9
WPC93166.E62 06/15/93 1 WPC93181.E48 06/30/93 1
WPC93166.E63 06/15/93 2 WPC93181.E49 06/30/93 1
WPC93166.E64 06/15/93 1 WPC93181.E50 06/30/93 1
WPC93166.E66 06/15/93 2 WPC93181.E52 06/30/93 2
WPC93167.229 06/16/93 8 WPC93181.E54 06/30/93 1
WPC93167.232 06/16/93 2 WPC93188.226 07/07/93 1
WPC93167.A51 06/16/93 3 WPC93195.226 07/14/93 2
WPC93167.R07 06/16/93 2
WPC93167.R09 06/16/93 1
WPC93167.R15 06/16/93 3
WPC93167 R1B 06/16/93 1 Table Al.9 PIT tag release group
WPC93168 E42 06/17/93 2 information. The table includes release
WPC93168.W34 06/16/93 0 group information, release  group
WPC93168.W40 06/17/93 1 identification code, number of individuals
WPC93168.W47 06/17/93 2 observed at Lower Granite Dam (GRJ),
WPC93169.E28 06/18/93 2 and the cohort number assigned to the
WPC93169.E29 06/18/93 6 group.
WPC93169.W24 06/18/93 2
WPC93169.W32 06/18/93 1 speciessteelhead earing type wild
WPC93169.W33 06/18/93 2 release siteSnake Trap
WPC93173.229 06/22/93 2
WPC93173.232 06/22/93 1 Release | # obs'd | cohort
Release Group

WPC93173.A51 06/22/93 2 Date at GRJ #
WPC93174.254 06/23/93 3 1989
WPC93174.R12 06/23/93 1 EWB89106.SNK 04/16/89 16
WPC93175.E36 06/24/93 4 EWB89107.SNK 04/17/89 21 1
WPC93175.E39 06/24/93 1 EWB89108.SNK 04/18/89 27
WPC93175.E50 06/24/93 4 EWB89109.SNK 04/19/89 43 2
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Table A1.9 (Continued) PIT tag release Table A1.9 (Continued) PIT tag release
group information. The table includesgroup information. The table includes
release group information, release groupelease group information, release group
identification code, number of individuals identification code, number of individuals
observed at Lower Granite Dam (GRJ)observed at Lower Granite Dam (GRJ),
and the cohort number assigned to thand the cohort number assigned to the

group. group.

speciessteelhead earing type wild speciessteelhead earing type wild

release siteSnake Trap release siteSnake Trap
Release Group Release | # obs’d | cohort Release Group Release | # obs'd | cohort

Date at GRJ # Date at GRJ #
EWB89110.SNK 04/20/89 26 3 EWB90114.SNK 04/24/90 111 6
EWB89111.SNK 04/21/89 40 EWB90115.SNK 04/25/90 86 7
EWB89112.SNK 04/22/89 45 4 EWB90116.SNK 04/26/90 95 8
EWB89113.SNK 04/23/89 40 5 EWB90118.SNK 04/28/90 66 9
EWB89114.SNK 04/24/89 24 EWB90119.SNK 04/29/90 55 10
EWB89115.SNK 04/25/89 37 6 EWB90120.SNK 04/30/90 50 11
EWB89116.SNK 04/26/89 26 EWB90121.SNK 05/01/90 49 12
EWB89117.SNK 04/27/89 15 EWB90122.SNK 05/02/90 27
EWB89118.SNK 04/28/89 17 7 EWB90123.SNK 05/03/90 45 13
EWB89119.SNK 04/29/89 17 EWB90124.SNK 05/04/90 27
EWB89120.SNK 04/30/89 18 8 EWB90125.SNK 05/05/90 53 14
EWB89121.SNK 05/01/89 30 EWB90126.SNK 05/06/90 80 15
EWB89122.SNK 05/02/89 29 9 EWB90127.SNK 05/07/90 146 16
EWB89123.SNK 05/03/89 34 EWB90128.SNK 05/08/90 87 17
EWB89124.SNK 05/04/89 40 10 EWB90129.SNK 05/09/90 55 18
EWB89125.SNK 05/05/89 39 EWB90130.SNK 05/10/90 36 19
EWB89126.SNK 05/06/89 79 11 EWB90131.SNK 05/11/90 16
EWB89127.SNK 05/07/89 117 12 EWB90132.SNK 05/12/90 23 20
EWB89128.SNK 05/08/89 8 EWB90133.SNK 05/13/90 45
EWB89129.SNK 05/09/89 80 13 EWB90134.SNK 05/14/90 50 21
EWB89130.SNK 05/10/89 87 14 EWB90135.SNK 05/15/90 17 22
EWB89131.SNK 05/11/89 25 15 EWB90136.SNK 05/16/90 27
EWB89132.SNK 05/12/89 37 EWB90137.SNK 05/17/90 30
EWB89133.SNK 05/13/89 20 EWB90138.SNK 05/18/90 11 23
EWB89134.SNK 05/14/89 13 16 EWB90139.SNK 05/19/90 20
EWB89135.SNK 05/15/89 14 EWB90145.SNK 05/25/90 32 24
1990 EWB90146.SNK 05/26/90 28

EWB90107.PS 04/17/90 18 EWB90148.SNK 05/28/90 41 25
EWB90107.SNK 04/17/90 7 1 EWB90149.SNK 05/29/90 16
EWB90108.SNK 04/18/90 36 EWB90150.SNK 05/30/90 62 26
EWB90109.SNK 04/19/90 51 2 EWB90152.SNK 06/01/90 36 27
EWB90111.SNK 04/21/90 69 3 EWB90153.SNK 06/02/90 22
EWB90112.SNK 04/22/90 72 4 1991
EWB90113.SNK 04/23/90 52 5 EWB91116.SNK 04/26/91 57 1
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Table A1.9 (Continued) PIT tag release Table A1.9 (Continued) PIT tag release
group information. The table includesgroup information. The table includes
release group information, release groupelease group information, release group
identification code, number of individuals identification code, number of individuals
observed at Lower Granite Dam (GRJ)observed at Lower Granite Dam (GRJ),
and the cohort number assigned to thand the cohort number assigned to the

group. group.

speciessteelhead earing type wild speciessteelhead earing type wild

release siteSnake Trap release siteSnake Trap
Release Group Release | # obs’d | cohort Release Group Release | # obs'd | cohort

Date at GRJ # Date at GRJ #
EWB91117.SNK 04/27/91 50 2 EWB92119.SNK 04/28/92 64 5
EWB91118.SNK 04/28/91 49 3 EWB92121.SNK 04/30/92 72 6
EWB91119.SNK 04/29/91 26 EWB92122.SNK 05/01/92 180 7
EWB91120.PS 04/30/91 2 EWB92123.SNK 05/02/92 154 8
EWB91120.SNK 04/30/91 18 4 EWB92124.SNK 05/03/92 69 9
EWB91121.SNK 05/01/91 14 EWB92125.SNK 05/04/92 44 10
EWB91125.SNK 05/05/91 5 EWB92126.SNK 05/05/92 44 11
EWB91126.SNK 05/06/91 7 5 EWB92127.SNK 05/06/92 54 12
EWB91127.SNK 05/07/91 42 EWB92128.SNK 05/07/92 40 13
EWB91128.SNK 05/08/91 21 6 EWB92129.SNK 05/08/92 61 14
EWB91129.SNK 05/09/91 47 EWB92130.SNK 05/09/92 88 15
EWB91130.SNK 05/10/91 360 7 EWB92131.SNK 05/10/92 90 16
EWB91131.SNK 05/11/91 188 8 EWB92132.SNK 05/11/92 60 17
EWB91132.SNK 05/12/91 113 9 EWB92133.SNK 05/12/92 29 18
EWB91133.SNO 05/12/91 126 10 EWB92134.SNK 05/13/92 13
EWB91133.SNK 05/13/91 59 11 1993
EWB91134.SNK 05/14/91 84 12 EWB93110.SNK 04/20/93 12
EWB91135.SNK 05/15/91 56 13 EWB93111.SNK 04/21/93 10 1
EWB91137.SNK 05/17/91 85 14 EWB93112.SNK 04/22/93 16
EWB91138.SNK 05/18/91 152 15 EWB93114.SNK 04/24/93 23 2
EWB91139.SNK 05/19/91 339 16 EWB93115.SNK 04/25/93 28
EWB91140.SNK 05/20/91 51 17 EWB93116.SNK 04/26/93 23 3
EWB91143.SNK 05/23/91 32 18 EWB93117.SNK 04/27/93 39
EWB91144.SNK 05/24/91 26 EWB93118.SNK 04/28/93 50 4
EWB91145.SNK 05/25/91 55 19 EWB93119.SNK 04/29/93 57 5
EWB91146.SNK 05/26/91 35 20 EWB93120.SNK 04/30/93 50 6
EWB91147.SNK 05/27/91 21 EWB93121.SNK 05/01/93 87 7
1992 EWB93122.SNK 05/02/93 85 8

EWB92109.SNK 04/18/92 24 1 EWB93123.SNK 05/03/93 72 9
EWB92110.SNK 04/19/92 37 EWB93124.SNK 05/04/93 217 10
EWB92112.SNK 04/21/92 58 2 EWB93125.SN2 05/05/93 97 11
EWB92113.SNK 04/22/92 38 3 EWB93125.SNK 05/05/93 253 12
EWB92114.SNK 04/23/92 26 EWB93126.SNK 05/06/93 59 13
EWB92116.SNK 04/25/92 67 4 EWB93127.SNK 05/07/93 236 14
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Table A1.9 (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the

group.

speciessteelhead earing type wild
release siteSnake Trap

Release | # obs'd | cohort

Release Group Date at GRJ 4

EWB93128.SNK 05/08/93 93 15
EWB93129.SNK 05/09/93 40 16
EWB93130.SNK 05/10/93 66 17
EWB93131.SNK 05/11/93 36 18
EWB93132.SNK 05/12/93 49

EWB93133.SN2 05/13/93 84 19

EWB93133.SNK 05/13/93 61 20




Appendix 2. Cohort covariates Table A2.1 (Continued) Data used in the
regressions in chapter 5, section 4. These cohorts
Table A2.1 Data used in the regressions in are the Snake River trap run-of-the-river spring
chapter 5, section 4. These cohorts are the Snakéhinook. The cohort numbers correspond to the
River trap run-of-the-river spring chinook. The ones in Table Al.l through Table A1.3. The
cohort numbers Correspond to the ones in Tabldarameters are those reported in Table 4.4. The last
A1.1 through Table A1.3. The parameters are thoséV0 columns are the covariate values and are
reported in Table 4.4. The last two columns are thedverage values for the cohort.

covariate values and are average values for th
cohort. £ parameters date| ave.
S of flow
5 parameters date| ave. o r o release| (kcfs)
S of flow
20 6.93 8.85 117.4 89.2
1989
21 8.57 8.88 118.9 88.5
1 3.70 5.84 97.8 84.6
22 | 10.26 8.34 121.2 90.7
2 3.30 6.02 99.3 87.5
23 | 11.53 | 15.05 129.4| 1105
3 3.16 7.58 100.4 87.0
4 4.04 7.29 101.4 87.3 1990
5 | 493 | 695 | 1024| 878 1] 530 75 9.7 513
5 514 8.07 103.4 89.7 2 8.50 7.61 107.4 65.0
. 581 S 1044 92.3 3 8.13 9.11 108.1 65.6
3 5.00 — 1053 95.4 4 8.85 8.14 109.3 67.3
9 — 0.99 106.4 96.5 5 6.34 | 11.55 110.4 68.1
10 749 | 10.13 107.5 98.6 6 6.27 9.83 111.4 68.4
11 8.01 | 11.40 108.4 | 100.5 ! 621 | 1051 112.3 68.2
12 | 864 | 11.89 | 1004| 1025 8 | 5% | 972 | 1133] 667
13 8.97 | 11.94 1104 | 105.7 9 516 9.78 114.4 65.4
14 9.16 | 12.01 111.4 | 105.9 10 4.54 8.88 115.9 63.6
15 | 78 | 934 | 1123| 1010 | | 629 | 603 1186] 632
16 815 851 113.4 95.9 12 5.75 7.06 121.3 65.9
17 651 | 12.40 1145 oL8 13 | 10.34 9.47 128.5 83.3
18 | 684 | 868 | 1154| 887 1901
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Table A2.1 (Continued) Data used in the Table A2.1 (Continued) Data used in the
regressions in chapter 5, section 4. These cohortegressions in chapter 5, section 4. These cohorts
are the Snake River trap run-of-the-river springare the Snake River trap run-of-the-river spring
chinook. The cohort numbers correspond to thechinook. The cohort numbers correspond to the
ones in Table Al.1 through Table A1.3. Theones in Table Al.1 through Table A1.3. The
parameters are those reported in Table 4.4. The lagtarameters are those reported in Table 4.4. The last
two columns are the covariate values and aré@wo columns are the covariate values and are

average values for the cohort. average values for the cohort.

"g parameters date| ave. %’ parameters date| ave.

S of flow S of flow
© r o release| (kcfs) © r o release| (kcfs)
1 2.94 4.83 98.5 55.8 1 3.65 6.57 99.5 64.6
2 3.28 4.11 99.3 56.7 2 3.76 5.14 100.4 64.0
3 3.38 4.72 100.3 57.3 3 3.57 5.22 101.3 64.1
4 3.59 4.82 102.3 59.8 4 3.48 5.31 102.3 64.0
5 3.05 5.33 105.4 64.5 5 3.61 4.20 103.7 64.0
6 4.04 6.16 107.4 65.6 6 4.38 491 106.1 64.0
7 4.39 5.44 108.4 66.0 7 5.59 6.75 109.8 65.2
8 3.62 6.08 109.4 64.6 8 5.48 6.40 1114 66.4
9 4.89 8.34 112.4 66.1 9 6.27 7.25 112.6 66.4
10 511 8.06 113.3 64.9 10 7.14 6.52 1141 67.5
11 6.63 12.43 116.3 61.1 11 7.47 7.10 115.1 69.2
12 6.29 7.91 116.3 60.8 12 8.37 6.84 116.4 71.2
13 5.49 6.69 117.3 60.1 13 8.09 7.07 117.4 73.8
14 5.62 6.00 119.4 59.1 14 8.29 7.42 118.4 76.3
15 9.92 11.14 130.0 78.3 15 9.71 8.16 1194 78.2
1992 16 10.34 8.67 1204 825
1 3.94 5.61 98.6 37.3 17 10.83 5.91 121.6 88.0
2 3.73 6.53 99.6 39.0 18 11.41 7.41 122.4 90.8
3 3.95 6.57 105.6 46.8 19 13.55 7.94 1234 95.4
4 4.59 7.35 112.6 51.8 20 12.97 12.31 124.5 100.9
5 5.45 6.21 115.2 55.1 21 11.08 10.02 1254 102.6
6 5.36 9.96 122.7 725 22 10.65 10.10 126.4 102.5

1993 23 9.16 10.54 127.3 105.9
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Table A2.1 (Continued) Data used in the Table A2.2 (Continued) Data used in the
regressions in chapter 5, section 4. These cohortegressions in chapter 5, section 4. These cohorts
are the Snake River trap run-of-the-river springare the Clearwater trap run-of-the-river spring
chinook. The cohort numbers correspond to thechinook. The cohort numbers correspond to the
ones in Table Al.1 through Table A1.3. The ones in Tables Al.4 through Al.6. The parameters
parameters are those reported in Table 4.4. The laststimates were obtained using the methods
two columns are the covariate values and arelescribed in chapter 4. The last two columns are the

average values for the cohort. covariate values and are average values for the
cohort.
‘CC)' parameters date| ave.
< of flow = parameters date| ave.
& r o | release| (kcfs) S of flow
© r o release| (kcfs)
24 9.20 8.36 128.4 107.6
10 7.50 7.39 145.3 63.2
25 9.67 7.24 130.0 117.0
11 9.51 7.92 150.5 69.3
1990
Table A2.2 Data used in the regressions in| ¢ 247 571 89.4 495
chapter 5, section 4. These cohorts are the
Clearwater trap run-of-the-river spring chinook.| 2 2.52 5.98 90.3 50.1
The cohort numbers correspond to the ones i
Tables Al.4 through Al1.6. The parameters 3 2.95 6.55 91.9 0.8
estimates were obtained using the methods 4 319 734 93.8 52.7
described in chapter 4. The last two columns are the
covariate values and are average values for thg 5 2.55 5.77 95.7 56.3
cohort.
6 3.04 8.50 98.8 56.5
|5 parameters date| ave. 7 4.04 8.29 99.9 55.4
e
Q of flow 8 3.46 9.24 101.9 58.9
o r o release| (kcfs)
9 3.32 6.63 103.8 63.1
1989
10 3.23 6.62 105.5 65.2
1 2.54 5.52 89.0 78.0
11 4.10 10.27 106.4 65.4
2 2.34 9.30 90.2 78.9
12 4.50 11.17 107.8 66.2
3 2.52 7.71 91.9 80.3
13 6.03 8.59 123.0 69.9
4 2.49 6.49 93.4 82.9
14 7.80 3.86 138.1 48.0
5 2.54 6.30 94.8 84.6
15 9.40 3.85 140.0 50.5
6 3.15 9.60 97.0 85.0
16 11.25 4.33 141.3 54.1
7 4.17 10.58 103.0 90.4
17 13.46 9.60 142.9 60.4
8 4.28 10.64 105.9 96.2
18 12.03 11.03 144.5 71.8
9 7.39 6.67 144.2 63.1
1991




215

Table A2.2 (Continued) Data used in the Table A2.2 (Continued) Data used in the
regressions in chapter 5, section 4. These cohorteegressions in chapter 5, section 4. These cohorts
are the Clearwater trap run-of-the-river springare the Clearwater trap run-of-the-river spring
chinook. The cohort numbers correspond to thechinook. The cohort numbers correspond to the
ones in Tables Al.4 through Al1.6. The parameter®nes in Tables Al.4 through Al.6. The parameters
estimates were obtained using the methodsstimates were obtained using the methods
described in chapter 4. The last two columns are theescribed in chapter 4. The last two columns are the
covariate values and are average values for theovariate values and are average values for the

cohort. cohort.
5 parameters date| ave. = parameters date| ave.
S of flow S of flow
© r o release| (kcfs) © r o release| (kcfs)
1 2.68 5.64 94.0 54.0 23 8.21 | 10.13 129.0 78.4
2 2.26 3.30 95.5 57.5 24 7.34 7.27 130.4 82.4
3 2.49 4.04 96.4 57.0 25 6.74 8.52 131.5 84.4
4 2.19 4.73 97.4 58.6 1992
5 2.60 5.02 98.3 57.6 1 2.19 3.68 82.4 28.2
6 2.84 4.60 99.3 58.2 2 2.26 3.52 83.4 28.0
7 2.84 5.31 100.4 59.5 3 2.08 3.37 80.9 28.4
8 2.74 4.33 101.4 60.5 4 2.72 458 85.8 25.8
9 2.62 4.55 101.8 61.0 5 2.72 4.25 87.8 27.9
10 3.01 4.87 103.1 61.9 6 2.94 4.45 89.8 30.2
11 3.05 5.71 104.9 63.9 7 3.10 5.03 91.9 33.8
12 3.31 5.29 106.3 64.3 8 3.51 5.51 94.0 35.9
13 3.19 5.46 107.3 64.3 9 3.92 5.61 95.3 36.4
14 4.12 6.99 108.3 65.8 10 3.48 7.03 96.5 37.8
15 4.18 6.78 109.3 65.0 11 3.69 5.42 97.4 38.9
16 4.06 7.37 110.0 65.5 12 3.23 5.28 98.4 41.0
17 4.21 8.62 111.3 65.0 13 3.29 5.92 99.9 42.5
18 4.41 7.16 112.4 64.4 14 3.18 5.39 101.4 45.0
19 4.54 8.43 1134 64.7 15 2.95 5.76 102.3 47.2
20 4.92 8.21 114.4 63.1 16 2.94 5.02 103.3 48.4
21 5.18 8.07 116.4 60.4 17 3.19 5.84 104.4 49.3
22 4.22 6.32 116.4 61.3 18 3.10 6.89 105.3 50.0




216

Table A2.2 (Continued) Data used in the Table A2.2 (Continued) Data used in the
regressions in chapter 5, section 4. These cohortegressions in chapter 5, section 4. These cohorts
are the Clearwater trap run-of-the-river springare the Clearwater trap run-of-the-river spring
chinook. The cohort numbers correspond to thechinook. The cohort numbers correspond to the
ones in Tables Al.4 through Al1.6. The parameter®nes in Tables Al.4 through Al.6. The parameters
estimates were obtained using the methodsstimates were obtained using the methods
described in chapter 4. The last two columns are theescribed in chapter 4. The last two columns are the
covariate values and are average values for theovariate values and are average values for the

cohort. cohort.
5 parameters date| ave. = parameters date| ave.
S of flow S of flow
© r o release| (kcfs) © r o release| (kcfs)

19 3.42 6.40 106.1 49.9 4.70 7.45 112.9 73.3

20 2.50 6.59 107.3 53.6 5.04 7.83 114.8 77.0

21 3.41 5.21 108.3 53.0 5.18 7.77 116.9 82.4

0| Nl O] O

22 3.06 5.97 109.8 54.8 6.23 9.26 121.2 96.1

23 3.46 7.17 111.8 55.5

24 4.69 7.30 113.3 55.6

25 4.69 6.82 114.4 57.3

26 4.56 8.46 115.7 58.5

27 4.35 8.80 119.2 65.4

28 4.98 10.62 120.3 67.7

29 4.72 8.67 121.3 69.5

30 6.20 13.84 127.4 66.5

31 7.41 12.94 140.6 50.5

32 9.80 12.50 145.7 53.5

33 7.91 11.15 147.8 52.5

34 6.75 13.90 149.7 45.8

35 8.41 11.93 151.6 44.7
1993
2.99 5.75 100.5 66.9

2.57 531 101.9 70.9

3.94 5.56 106.3 66.6

Al W[N] PP

4.86 6.69 110.8 69.2




Appendix 3. Computer code
A3.1. Introduction

This appendix contains computer code for selective algorithms. All algorithms are
written in the C programming language, “traditional” or Kernighan and Ritchie (1978)
version. | compiled the code with a Sun C compiler, but other compilers will also be

compatible.

A3.2. Analysis of continuous trael time data

This first section contains the code to undertake the analysis of travel time data
performed in chapter 4. The code is contained in 5 files, and a data file must be supplied.
Before providing the code, | will briefly discuss the structure of the files and the routines
contained within. | will also provide a sample data file and the output generated from the
code with the sample data file.

main.c — contains the routine main() that controls the program by calling other
routines. This routine also reads in the data file.

mle.c — contains the routines r_mle() and sig_mle() that compute maximum
likelihood estimates af ando.

conf_int.c — contains the routines r_mle() and sig_mle() that determine
(1—a) (LOO percent confident intervals for the parameters and prints them
out.

cumulative.c — contains the routine cumulative() that converts the travel time data
to cumulative travel time based on the model and estimates parameters.

chi.c — contains the routine chi() that performs the goodness-of-fit test and prints
out the results. This routine must be provided with a vector of cumulative
travel times.

main.c
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#include <stdio.h>

floatr_mle();

floatsig_mle();

void confidence_intervals();
floatcumulative();

void chi();

void main()

{

floatlength;/* length of the reach */

int num; /* number of individuals */

charjunk[12];/* place to put header info from data file */
float*tt_vec;/* vector to store travel time data */
float*cum_tt_vec; /* vector for values from tt cdf */

int i; /* increment for tt vector */

floatr, sig;/* model parameters */

floatalpha; /* 1 - alpha is width of conf. intervals */

int pars; [* # of parameters used in the model */
FILE*data; /* pointer to data file */

data = fopen(“tt.data”, “r");

fscanf(data, “%s%s%f”, junk, junk, &length);
fscanf(data, “%s%s%d"”, junk, junk, &num);
fscanf(data, “%s%s”, junk, junk);

/* allocate memory for the travel times vectors */
tt_vec = (float *) malloc(num*sizeof(float));
cum_tt vec = (float *) malloc(num*sizeof(float));

/* read in travel times from data file */
for(i = 0; i < num; ++i)
fscanf(data, “%f”, &tt_vec]i]);

/* compute maximum likelihood estimates */
r =r_mle(tt_vec, length, num);

sig = sig_mle(tt_vec, length, num);
printf(“mle r = %6.3\n”, r);

printf(“mle sig = %6.3f\n”, sig);

/* 95% confidence interval */
alpha = 0.05;
confidence_intervals(r, sig, length, num, alpha);

/* X-squared goodness-of-fit test */
/* the test needs values from the cumulative dist. func. */
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for(i = 0; i < num; ++i)
cum_tt_vec]i] = cumulative(r, sig, length, tt_vecli]);

pars = 2; /* number of parameters used by the model */
chi(cum_tt_vec, pars, num);

fclose(data);

}

miec

#include <math.h>

/* computes maximum likelihood estimate for the parameter r */
/* based on the travel time data */

float r_mle(tt_vec, pool_length, num)
float *tt_vec; [* vector of travel times for group */
float pool_length;
int num; /* number of individuals in group */
{

float tt_bar = O; /* average travel time */
int i;

for (i = 0; i < num; ++i){
tt_bar +=tt_vec]i];
tt_bar =tt_bar/num;

return(pool_length/tt_bar);
}

/* computes maximum likelihood estimate for the parameter sigma */
[* based on the travel time data */

float sig_mle(tt_vec, pool_length, num)
float *tt_vec;
float pool_length;
int num;

{

float tt bar =0; /* arithmetic mean */
float tt_recip = 0;/* harmonic mean */
int i;

for (i = 0; i < num; ++i){
tt_bar += tt_vec]i];
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tt_recip += 1.0/tt_vec]i];
}
tt_bar = tt_bar/num;
tt_recip = tt_recip/num;

return(pool_length * sqgrt(tt_recip - (1.0/tt_bar)));

conf int.c

#include <math.h>
#include <stdio.h>

/* This routine is passed the maximum likelihood estimates for r */
/* and sigma, reach length, number of fish and alpha. It prints */
/*100*(1-alpha) percent confidence intervals for the parameters */
[* r and sigma. The appropriate quantiles of the Student's tand */
[* chi-square are obtained from S-plus, which is provided with */
/* the degrees of freedom. */

void confidence_intervals(r, s, L, num, alpha)
float r, s; /* mles of r and sigma */
float L; /* reach length */
int num; /* number of individuals */
float alpha; /* 1-alpha is length of C.I. */

{
float r_min, r_max; /* min and max of r C.I. */
float sig_min, sig_max; /* min and max of sigma C.I. */
float a, b; /* quantiles used in C.1I. calc. */
char junk[10]; /* junk from input file */
FILE *iptr, *optr; /* input and output files */

/* provide degrees of freedom and alpha for S-plus routine */
optr = fopen(“.quant_info”, “w");

fprintf(optr, “%d\t%f\n”, num - 1, alpha);

fclose(optr);

[* execute S-plus routine that prints quantiles to a file */
system(“S < quantile.s > /dev/null”);

/* openfile and read in (1.0-alpha/2)th quantile of t dist. */
iptr = fopen(“.quantile”, “r");
fscanf(iptr,"%s%f", junk, &a);

/* compute max and min values of r C.I. */
r_min = r*(1.0 - a*sqrt((s*s)/(r*L*(num-1))));
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r_max = r*(1.0 + a*sqrt((s*s)/(r*L*(num-1))));

[* printr C.1. */

printf(“%4.1f percent confidence interval for r:\n”,
100*(1.0-alpha));

printf(*(%6.2f,%6.2\n", r_min, r_max);

/* read (alpha/2)th and (1-alpha/2)th quantiles of chi-sq.
dist. */

fscanf(iptr,"%s%f”, junk, &a);

fscanf(iptr,"%s%f", junk, &b);

/* compute max and min values of sig C.1. */
sig_min = s*sqrt((float)(num)/a);
sig_max = s*sqrt((float)(num)/b);

[* print sigma C.I. */

printf(“%4.1f percent confidence interval for sigma:\n”,
100*(1.0-alpha));

printf(“(%6.2f,%6.2f)\n", sig_min, sig_max);

cumulativec

#include <math.h>
#include “input.h”

#define pi3.1415

[* phi is the cumulative distribution for a standard normal */
float phi(x)

float x;

{
}

return(0.5 + erf(x/sqrt(2.0))/2);

/*this routine returns a value from the cumulative distribution */
/* of the basic travel time model. The routine must be passed */
/* the model parameters and the travel time. The procedure for */
/* generating the value is described in appendix 4.a */
float cumulative(r, sig, L, t)
float r, sig, L; /* model parameters */
float t; /* travel time */

float mu, lam; /* reparameterization */
float first, second;
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double Y, Z;

double z2, 74;

double facl, fac2;

float d0 =0.2316419;
float dl =0.319381530;
float d2 =-0.356563782;
float d3 =1.781477937;
float d4 =-1.821255978;
float d5 = 1.330274429;
float gz, qz2, qz4;

mu = L/r;

lam = L/sig;

y = lam*(t-mu)/(mu*sqrt(t));
Z = lam*(t+mu)/(mu*sqrt(t));

if (z<4){
gz = 1/(1+d0*z);
gz2 = qz*qz;

gz4 = qz2*qz2;

facl = (exp(-(y*y)/2))/(sart(2*pi));
fac2 = (d1*qz + d2*qz2 + d3*qz2*qz
+ d4*qz4 + d5*qz4*qz);

}
if (z>=4){
z2 = 7*z;
24 = 722*72;
facl = (exp(-(y*y)/2))/(sqrt(2*pi))/z;
fac2 =1 - 1/z2 + 3/z4 - 3*5/(z2*z4) + 3*5*7/(z4*z4)
- 3*5*7*9/(z4*24*22) + 3*5*7*9*11/(z4*z4*z4)
- 3*5*7*9*11*13/(z4*24*24*22);
}
second = facl*fac2;
first = phi(y);

return(first + second);

chi.c

#include <math.h>
#include <stdio.h>
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void
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gammp(); /* This routine is from Numerical Recipesin C */
/* Press, et al. 1988 */
chi(cum_vec, params, num_fish)

float *cum_vec; /* vector cdf values of tt dist. */
int params; /* number of parameters estimated */
int num_fish; /* number of individuals */
int num_bins; /* number of bins */
float bin_width; /* width of each bin */
float expect; [* expected individuals per bin */
int *obs; [* vector of oberved individuals */
int i; [* counter */
float X =0.0; [* chi square statistic */
float prob; /* chi square probability */
int df; * degrees of freedom */

[* num_bins is determined by Mann-Wald calculation */
num_bins = (int)(3.76*pow((float)(num_fish), 0.4) );

bin_width = 1.0/num_bins;
expect = bin_width*num_fish;

/* allocate memmory for vector of observed values and set */
/* each element to zero */

obs = (int *) malloc(num_bins*sizeof(int));

bzero((char *) obs, num_bins*sizeof(float));

/* determine which bin each individual falls into */
for (i=0; i< num_{fish; ++i)
++obs](int)(cum_vec]i]/bin_width)];

/* compute chi square statistic */
for (i=0; i < num_bins; ++i)
X += ((expect-obs[i])*(expect-obs[i]))/expect;

df = num_bins - params - 1;

/* compute percentile of chi-square distribution */
prob = gammp((float)(df)/2.0, X/2.0);

printf(\nX-squared goodness-of-fit test\n”);
printf(“X-squared = %7.3f\n", X);
printf(“degrees of freedom = %3d\n”, df);
printf(“p = %7.3f\n”, 1.0 - prob);
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sample data file

reach length: 52.0

num fish: 57

travel times:

15.74 12.06 30.63 24.79 17.54
26.39 14.87 9.25 4.83 12.32
14.61 9.08 20.34 7.74 16.98
3.99 10.69 23.38 20.02 19.74
22.66 24.62 20.62 18.24 22.48
10.76 12.01 9.99 6.34 21.47
18.09 22.25 15.74 13.68 5.11
10.3510.41 22.41 8.21 36.66
21.45 13.17 18.64 18.69 11.85
20.57 34.52 15.73 9.46 37.39
21.53 92.03 33.30 21.67 21.94
21.45 8.23

program output

mler=2.773
mle sig = 7.251

95.0 percent confidence interval for r:
(2.33,3.22)

95.0 percent confidence interval for sigma:
(6.18, 8.97)

X-squared goodness-of-fit test
X-squared = 22.263

degrees of freedom = 15
p=0.101

A3.3. inverse Gaussian random ariate

The details of this procedure are contained in Chapter 4, appendix d.

Inverse gaussianandom variate

#include <math.h>
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double drand48();
void srand48();

/* returns a random variate from the standard normal */
/* distribution. Taken from Numerical Recipes in C. */
double normal()
{

static int iset = 0;

static double gset;

double fac, r, v1, v2;

if (iset == 0){
do {
vl =2.0 * drand48() - 1.0;
v2 = 2.0 * drand48() - 1.0;
r=vi*vl + v2*v2;
} while (r >= 1.0);
fac = sqgrt(-2.0 * log((float)r)/(float)r);
gset = v1 * fac;
iset =1,
return v2*fac;
} else {
iset = 0;
return gset;

}

[* returns a random variate from the Inverse Gaussian */
[* distribution. Details of the algorithm are contained in */
[* appendix 4.d. */
float travel(mu,lam)

float mu, lam; /* model parameters */
{

float n, v, w, c, X;
float p;

n = normal();

V = n*n;

W = mu*v;

¢ = mu/(2.0*lam);

X = mu + c*(w - sgri(w*(4.0*lam + w)));
p = mu/(mu + x);

if (p > drand48()) return(x);
else return(mu*mu/x);
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